Some examples of the diverse research done by chemistry experts include discovery of new medicines and vaccines,and development of new chemical products and materials. In a article, mentioned the application of 1273-94-5, Name is 1,1′-Diacetylferrocene, molecular formula is C14H6FeO2
Two ferrocene derivatives with appended pyrazole substituents, namely, 1,1?-bis(5-methyl-1H-pyrazol-3-yl)ferrocene (H2LH) and 1,1?-bis(5-trifluoromethyl-1H-pyrazol-3-yl)ferrocene (H2LF), were synthesized. In solid state they form distinct H-bonded dimers with orthogonal (H2LH, C2 symmetry) or antiparallel (H2LF, C2h symmetry) arrangement of the two ferrocene/pyrazole hybrid molecules. Supramolecular dimerization was also detected in solution at low temperatures, though diffusion-ordered spectroscopy and variable-temperature NMR spectroscopy revealed several dynamic processes. Redox potentials of the ferrocene derivatives are affected by the nature of the pyrazole substituent (Me, CF3). In their deprotonated form [LR]2-, both ferrocene/pyrazole hybrids serve as ligands and form oligonuclear CuI, AgI, and AuI complexes that were identified by matrix-assisted laser desorption ionization mass spectrometry. X-ray crystallography revealed the structures of Cu6L3H and Ag6L3F, which both contain two parallel and eclipsed [M(mu-pz)]3 metallamacrocycles (M = Cu, Ag) linked by three ferrocene units. MI…MI distances between the two triangular M3N6 decks are shorter in Ag6L3F (3.28-3.30 vs 3.44-3.51 A in the case of Cu6L3H), indicating substantial intramolecular closed-shell Ag(d10)-Ag(d10) interactions. However, Cu6L3H features close intermolecular Cu…Cu contacts as short as 3.37 A. Moessbauer data for both the ligands and complexes were collected, and electrochemical properties were measured; preliminary luminescence data are reported. (Figure Presented).
You can also check out more blogs about70724-23-1 and wish help many people in the next few years. .Related Products of 1273-94-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion