Something interesting about 1293-65-8

Keep reading other articles of 1293-65-8! Don’t worry, you don’t need a PhD in chemistry to understand the explanations! Synthetic Route of 1293-65-8

Having gained chemical understanding at molecular level, Synthetic Route of 1293-65-8, chemistry graduates may choose to apply this knowledge in almost unlimited ways, as it can be used to analyze all matter and therefore our entire environment. In a patent,Which mentioned a new discovery about 1293-65-8

A bis(phosphine)borane ambiphilic ligand, [Fe(h5-C5H4PPh2)(h5-C5H4PtBu{C6H4 (BPh2)-ortho})] (FcPPB), in which the borane occupies a terminal position, was prepared. Reaction of FcPPB with tris(norbornene)platinum(0) provided [Pt(FcPPB)] (1) in which the arylborane is h3BCC-coordinated. Subsequent reaction with CO and CNXyl (Xyl=2,6-dimethylphenyl) afforded [PtL(FcPPB)] {L=CO (2) and CNXyl (3)} featuring h2BC-And h1B-Arylborane coordination modes, respectively. Reaction of 1 or 2 with H2 yielded [PtH(m-H)(FcPPB)] in which the borane is bound to a hydride ligand on platinum. Addition of PhC2H to [Pt(FcPPB)] afforded [Pt(C2Ph)(m-H)(FcPPB)] (5), which rapidly converted to [Pt(FcPPB’)] (6; FcPPB’=[Fe(h5-C5H4PPh2)(h5- C5H4PtBu{C6H4 (BPh-CPh=CHPh-Z)-ortho}]) in which the newly formed vinylborane is h3BCC-coordinated. Unlike arylborane complex 1, vinylborane complex 6 does not react with CO, CNXyl, H2 or HC2Ph at room temperature.

Keep reading other articles of 1293-65-8! Don’t worry, you don’t need a PhD in chemistry to understand the explanations! Synthetic Route of 1293-65-8

Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion