Career opportunities within science and technology are seeing unprecedented growth across the world, Reference of 16009-13-5, and those who study chemistry or another natural science at university now have increasingly better career prospects. In a patent,Which mentioned a new discovery about 16009-13-5
Background: Tight regulation of heme homeostasis is a critical mechanism in pathogenic bacteria since heme functions as iron source and prosthetic group, but is also toxic at elevated concentrations. Hemolysin-activating lysine-acyltransferase (HlyC) from Escherichia coli is crucial for maturation of hemolysin A, which lyses several mammalian cells including erythrocytes liberating large amounts of heme for bacterial uptake. A possible impact and functional consequences of the released heme on events employing bacterial HlyC have remained unexplored. Methods: Heme binding to HlyC was investigated using UV/vis and SPR spectroscopy. Functional impact of heme association was examined using an in vitro hemolysis assay. The interaction was further studied by homology modeling, molecular docking and dynamics simulations. Results: We identified HlyC as potential heme-binding protein possessing heme-regulatory motifs. Using wild-type protein and a double alanine mutant we demonstrated that heme binds to HlyC via histidine 151 (H151). We could show further that heme inhibits the enzymatic activity of wild-type HlyC. Computational studies illustrated potential interaction sites in addition to H151 confirming the results from spectroscopy indicating more than one heme-binding site. Conclusions: Taken together, our results reveal novel insights into heme-protein interactions and regulation of a component of the heme uptake system in one of the major causative agents of urinary tract infections in humans. General significance: This study points to a possible novel mechanism of regulation as present in many uropathogenic E. coli strains at an early stage of heme iron acquisition from erythrocytes for subsequent internalization by the bacterial heme-uptake machinery.
In the meantime we’ve collected together some recent articles in this area about 16009-13-5 to whet your appetite. Happy reading! Reference of 16009-13-5
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion