102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see
It is a common heterocyclic compound, the iron-catalyst compound, Ferrocene, cas is 102-54-5 its synthesis route is as follows.
Under a nitrogen atmosphere, ferrocene (10 g, 53.8 mmol) was dissolved in anhydrous n-hexane (50 ml), followed by adding and mixing with tetramethylethylenediamine (TMEDA, 18.1 ml, 84.5 mmol) A solution of n-butyllithium (n-BuLi) in n-hexane (2.5 M, 48.0 ml) was added slowly dropwise at 0 C., followed by stirring at 25 C. After stirring for 12 hours and removing the solvent, a light orange yellow complex was formed. The complex was added to anhydrous ethyl ether (200 ml), followed by stirring to disperse the complex in anhydrous ethyl ether and lowering the temperature of the dispersion to -78 C. A solution of iodine (19.0 g) in ethyl ether (350 ml) was added to the dispersion slowly dropwise, and the temperature was raised to 25 C. After stirring for a further hour, the reaction was poured into an aqueous ferric chloride (FeCl3) solution (5 wt %, 100 ml), followed by extraction with ethyl ether (200 ml). An organic layer thus obtained was washed ten times with an aqueous ferric chloride (FeCl3) solution (5 wt %, 100 ml) and then was washed with water until the aqueous layer was clear. Thereafter, water was removed using anhydrous MgSO4 and solvent was also removed to obtain a mixture in the form of a blackish brown liquid of compound a and compound b as shown in scheme I in a molar ratio of 1:1. (0037) The obtained mixture (2.5 g, 6.67 mmol), cuprous iodide (CuI, 128 mg, 0.67 mmol), ferric chloride (FeCl3, 107 mg, 0.67 mmol), sodium hydroxide (NaOH, 540 mg, 13.3 mmol), aqueous ammonia (15 M, 30 ml), and ethanol (EtOH, 30 ml) were placed in a high pressure reaction tube of 150 ml. A reaction was conducted at 90 C. for 12 hours. After the temperature of the content in the reaction dropped to 25 C., ethyl ether (200 ml) was added and the content in the reaction tube was washed three times with an aqueous sodium hydroxide solution (1.0 M, 150 ml). Then, water was removed using anhydrous MgSO4 and solvent was also removed to obtain an orange brown crude product, which was purified by column chromatography (eluent: ethyl acetate/n-hexane=1/2 (v/v)) to obtain aminoferrocene compound c shown in Scheme I in the form of a yellowish brown solid (yield: 48%). (0038) 1H NMR (400 MHz, CDCl3) of aminoferrocene compound c: delta 4.08 (s, 5H), 3.97 (t, J=1.6, 2H), 3.82 (t, J=1.6, 2H), 2.58 (br, 2H).
102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see
Reference:
Patent; NATIONAL TSING HUA UNIVERSITY; Cheng, Chien-Hong; Lai, Cheng-Chang; Chang, Yu-Wei; Liao, Chuang-Yi; Huang, Min-Jie; (16 pag.)US9356244; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion