102-54-5, Ferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated
Acetylferrocene was synthesizedaccording to previously reported procedures [49]. Briefly, 85% phosphoric acid (4?mL) was slowly added to a stirred solution of ferrocene (4.0?g, 21.5?mmol) and acetic anhydride (13.3?mL, 140.0?mmol). The mixture was heated in a water bath maintained at 50?C for 10?min and then cooled in ice. Water (25?mL) was added to the mixture, that was then neutralized with NaHCO3 until the end of CO2 formation. CH2Cl2 (50?mL) was added and the orange organic layer was separated and retained in the dark, whereas the brown-coloured aqueous layer washed with a further 20?mL of CH2Cl2. The combined organic fractions were washed twice with water and then dried with anhydrous magnesium sulfate. Crude acetyl ferrocene, obtained removing the solvent under reduced pressure, was purified by silica gel column chromatography using a 95/5 mixture of petroleum ether/ethyl acetate as starting eluent to first separate the unreacted ferrocene. Once the ferrocene was eluted, the eluent was replaced by 100% ethyl acetate to collect acetyl ferrocene, that was then obtained by removing the solvent on a rotary evaporator.
The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.
Reference£º
Article; Paucar, Rocio; Martin-Escolano, Ruben; Moreno-Viguri, Elsa; Cirauqui, Nuria; Rodrigues, Carlos Rangel; Marin, Clotilde; Sanchez-Moreno, Manuel; Perez-Silanes, Silvia; Ravera, Mauro; Gabano, Elisabetta; European Journal of Medicinal Chemistry; vol. 163; (2019); p. 569 – 582;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion