Application of Tris[2-(dimethylamino)ethyl]amine

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.

General preparation of ferrocenyl chalcones: Ferrocene carboxaldehyde (1 eq) and the appropriate 2-hydroxyacetophenone (1 eq) were dissolved in absolute ethanol (40 ml.) in a 100 ml. two necked round bottom flask. After stirring the mixture 10 to 15 min. at room temperature, sodium hydroxide (3 eq) was added, and the solution was stirred overnight at room temperature, or 2-3h at reflux. The mixture was poured into water (100 ml.) and hydrochloric acid (12 M, 15 ml_), extracted with dichloromethane (3 x 50 ml_), and washed with water. The organic phase was dried over magnesium sulfate, filtered, and the solvent removed by evaporation. The product was purified by silica gel chromatography, using a mixture of petroleum ether/dichloromethane 4:1 as an eluent, and again using HPLC in acetonitrile/water (90:10). After HPLC purification, the acetonitrile was removed under reduced pressure and the aqueous phase extracted with dichloromethane.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS); HILLARD, Elizabeth; CHABOT, Guy; MONSERRAT, Jean-Philippe; JAOUEN, Gerard; TIWARI, Keshri Nath; DE MONTIGNY, Frederic; NEAMATI, Nouri; WO2011/107572; (2011); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.

To a solution of hydroxylamine hydrochloride (0.83 g,11.97 mmol) in methanol (10 mL) was added sodium carbonate(0.63 g, 5.98 mmol). The mixture was stirred for 5 min. Then, ferrocenecarboxaldehyde1 (2.33 g, 10.88 mmol) was added and the reaction mixture was stirred at room temperature for 12 h. The precipitate formed was then filtered off and the filtrate was evaporated in vacuo. The product was washed with hexane (10 mL) toafford the pure ferrocenecarboxaldehyde oxime 4 in ca. 85% yield(Scheme 2).

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Lasri, Jamal; Elsherbiny, Abeer S.; Eltayeb, Naser Eltaher; Haukka, Matti; El-Hefnawy, Mohamed E.; Journal of Organometallic Chemistry; vol. 866; (2018); p. 21 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

To a solution of ferrocenecarboxaldehyde (2) (4.28 g, 20 mmol) in acetone (100 mL) was added 2 N aq. NaOH (2 mL). The mixture was stirred at room temperature. After complete reaction (TLC analysis), the mixture was diluted with water and the precipitation was filtered to afford the crude product, which were purified by column chromatography using silica gel. 84% yield; brown solid, mp 125-127 C; 1H NMR (600 MHz, CDCl3): delta 7.42 (d, J = 16.0 Hz, 1H, CH=CH), 6.34 (d, J = 16.0 Hz, 1H, CH=CH), 4.50 (s, 2H, ferrocene-H), 4.44 (s, 2H, ferrocene-H), 4.15 (s, 5H, ferrocene-H), 2.29 (s, 3H, Me-H). MS (ESI): 255.1 (C14H14FeO, [M+H]+). Anal. Calcd for C14H14FeO: C, 66.17; H, 5.55; O, 6.30. Found: C, 66.23; H, 5.49; O, 6.36%.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Guo, Ying; Wang, Si-Qi; Ding, Zong-Qing; Zhou, Jia; Ruan, Ban-Feng; Journal of Organometallic Chemistry; vol. 851; (2017); p. 150 – 159;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenecarboxaldehyde, cas is 12093-10-6 its synthesis route is as follows.

General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 12093-10-6

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxaldehyde, 12093-10-6

12093-10-6, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxaldehyde, cas is 12093-10-6,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

An ethanolic solution (10 ml) of ferrocenyl carboxyaldehyde (21 mg, 0.1 mmol) was taken in a round bottomed flask and acetyl cymantrene (28 mg, 0.1 mmol) was added under stirring condition. Two equivalents of sodium hydroxide in ethanol solution was then added to the reaction mixture and stirring was continued at room temperature under inert atmosphere for 3 h. The reaction was continuously monitored by TLC and on completion of the reaction the solution was dried under vacuum and the residue was dissolved in dichloromethane solvent and subjected to chromatographic work-up using column chromatography. Elution with dichloromethane/hexane (30:70 v/v) solvent mixture separated the following compounds in the order of elution: [(CO)3Mn(eta5-C5H4)COCH3], [(eta5-C5H5)Fe(eta5-C5H4CHO)] and violet colored compound [(eta5-C5H4)Mn(CO)3COCH=CH(eta5-C5H4)Fe(eta5-C5H5)] (1). {Yield: 32 mg (73%)} 1: Anal. calcd. (found): C, 57.01 (57.23); H, 3.39 (3.34). IR(nuCO, cm-1,CH2Cl2) 2022.8 (vs), 1937 (vs br), 1653 (s), 1586 (s). 1H NMR (delta, CDCl3): 4.2 (s, eta5-C5H5, 5H), 4.52 (t, eta5-C5H4, 2H), 4.6 (t, eta5-C5H4, 2H), 4.9 (t, eta5-C5H4, 2H), 5.55 (t, eta5-C5H4, 2H), 6.58 (d, J = 15 Hz, CH=, 1H), 7.78 (d, J = 15 Hz, =CH, 1H). 13C NMR (delta, CDCl3): 69.16 (eta5-C5H5), 69.95 (eta5-C5H4), 71.66 (eta5-C5H4), 78.47 (eta5-C5H4), 83.61 (eta5-C5H4), 86.59 (eta5-C5H4), 93.78 (eta5-C5H4), 117.41 (=CH), 146.38 (=CH), 185.29 (-C=O). UV-Vis. (lambda (nm), CH2Cl2) = 321, 384, 502. MS (ESI): m/z 443 (M + 1)+.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxaldehyde, 12093-10-6

Reference£º
Article; Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav; Journal of Molecular Structure; vol. 1085; (2015); p. 162 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.

General procedure: To a clean and dry round bottom flask with a septum, 3-5mmol of the ferrocenylketone were added and approximately 20mL of dimethoxyethane (DME) were transferred with a positive nitrogen pressure; the mixture was stirred to obtain a reddish solution. 0.75equivalents of lithium aluminum hydride (1M in tetrahydrofuran) were added, and a change of color from red to yellow in the solution was observed. The reaction was stopped after 30min at room temperature; complete transformation was confirmed with TLC. After this time, Glauber’s salt was added and the mixture was stirred until a formation of a granular precipitate was observed. The mixture was filtered, and the solvent was eliminated to obtain yellow to orange oils or solids. The compounds were employed directly for following reactions without further purification.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Garcia-Barrantes, Pedro M.; Lamoureux, Guy V.; Perez, Alice L.; Garcia-Sanchez, Rory N.; Martinez, Antonio R.; San Feliciano, Arturo; European Journal of Medicinal Chemistry; vol. 70; (2013); p. 548 – 557;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

To a round bottomed flask equipped with a magnetic stirrer bar was added ferrocene carboxaldehyde(535 mg, 2.5 mmol, 1 eq). The flask was then charged with ethanol (4 cm3) and THF (1 cm3). Thered solution was then treated with sodium borohydride (123 mg, 3.2 mmol, 1.3 eq). The flask wasthen sealed and placed under a nitrogen atmosphere. After 30 minutes the solution had changedcolour to an orange and TLC analysis indicated full consumption of the starting material. The flaskwas then concentrated to 90% of original volume in vacuo. The dark orange residue was then takenup in EtOAc (15 cm3) and NaHCO3 (15 cm3). The bi-phasic mixture was transferred to separatingfunnel, the aqueous layer was separated and then back extracted with EtOAc (3 x 5 cm3), thecombined organic washings were then dried over MgSO4, filtered and then concentrated in vacuo togive a yellow solid. The ferrocene methanol was then taken up in 1,3-propanediol (5 cm3), the yellowsolution was then treated with ytterbium (Ill) triflate (77 mg, 0.125 mmol, 5 mol%). The flask wasthen sealed and heated to 100 C. After heating for 10 minutes TLC analysis indicated fullconsumption of the starting material. The flask was cooled to room temperature, diluted with H20(20 cm3) and EtOAc (20 cm3). The organic layer was then separated and the aqueous layer backextracted with EtOAc (3 x 5 cm3). The combined organic layers were then washed with H20 (2018 cm3) and brine (sat) (20 cm3) then dried over MgSO4, filtered then concentrated in vacuo to give an orange solid. Purification was then carried out by silica-gel chromatography eluting with n-Hex 1:1 EtOAc to give the desired product 3-(ferrocenyloxy)propan-lol (1) as an orange powder (514 mg, 74%).?H NIVIR (250 MHz, CDC13); oH: 4.24 (s, 4H), 4.11 (s, 6H), 3.65 (t, 2H, J 5.4 Hz), 3.54 (t, 2HJ=5.4 Hz), 3.65 (t, 2H J = 5.4 Hz), 2.52 (br s, 1H), 1.7 (quin 2H, J = 5.6 Hz); ?3C NIVIR (75 IVIHz, CDC13); Oc: 83.6, 77.3, 71.5, 69.4, 69.3, 69.2, 68.7, 32.0; HRMS (ESI iTOF) calculated for C,4H,8FeO2Na m/z 297.0553 found 297.0560 (m/z + Na); Electrochemical potential: 181 mV.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Patent; ATLAS GENETICS LIMITED; MARSH, Barrie J.; FROST, Christopher G.; SHARP, Jonathan; WO2015/52516; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: To a suspension of methyltriphenylphosphonium bromide (1equiv.) in dry THF (100 mL), under nitrogen atmosphere at room temperaturewas added potassium tert-butoxide (7.0 equiv.). The solutionwas stirred for 1 h and then a solution of the aldehyde (1 equiv.) indry THF (30 mL) was added slowly. The mixture was stirred at roomtemperature for 12 h andwas evaporated to dryness. The unreacted potassiumtert-butoxide was quenched with saturated NH4Cl solution(10 mL). The reaction mixture was then extracted with CHCl3(200 mL), washed with water (2 ¡Á 200 mL), brine (100 mL) and then dried over anhydrous Na2SO4. Evaporation of the organic layer gave aresidue, which was purified by column chromatography using hexaneas the eluting solvent to give the corresponding vinyl compounds.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Ravivarma, Mahalingam; Kumar, Kaliamurthy Ashok; Rajakumar, Perumal; Pandurangan, Arumugam; Journal of Molecular Liquids; vol. 265; (2018); p. 717 – 726;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: To a stirred solution of KOH (12.0 equiv.)in absolute EtOH (100 mL) cooled to 0 C in an ice-bath were added dropwise a solution of thecorresponding acetophenone (1.0 equiv.) and aldehyde (1.0 equiv.) in EtOH (20 mL). The reactionmixture was stirred at 0 C for 1 h and then at room temperature for 72 h under a nitrogen atmosphereor until TLC analysis indicated complete consumption of starting material. The resulting mixture wasthen poured into ice-water (100 mL) and acidified to pH 3-4 with 3 M HCl. The aqueous solution wasextracted with CHCl3 (3 100 mL) and the combined organic layer was washed with satd NaHCO3(2 100 mL), brine (2 100 mL), dried over anhydrous MgSO4, filtered and the solvent removedunder reduced pressure. The crude residue was purified by flash column chromatography over silicaand/or recrystallized from MeOH or absolute EtOH to afford the corresponding chalcones.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Sum, Tze Han; Sum, Tze Jing; Galloway, Warren R. J. D.; Collins, Suil; Twigg, David G.; Hollfelder, Florian; Spring, David R.; Molecules; vol. 21; 9; (2016);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of ferrocenylketone (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5-2 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give the pure products. In general, the yields were 68-86 %. Because of the relatively low activity of some ketones, their reactions at room temperature may be incomplete. They should be reacted in refluxing methanol. The reaction could be monitored by TLC.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Ling, Li; Hu, Jianfeng; Huo, Yanhong; Zhang, Hao; Tetrahedron; vol. 73; 1; (2017); p. 86 – 97;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion