Simple exploration of 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various fields.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

Ferrocene carboxyl aldehyde (0.100 g, 0.467 mmol) was dissolved in ethanol (8 mL), was added slowly in small portions sodium borohydride (0.090 g, 2.4mmol) at 0 . The reaction mixture was stirred at ambient temperature for 3 hours. It was add water (3mL) and dichloromethane (10 mL) in turn to complete the reaction.The organic layer was separated and the remaining water layer was extracted three times with dichloromethane (15mL x 3). The combined organic layer is washed with a saturated aqueous sodium chloride solution, placed into the over anhydrous sodium sulfate, filtered under reduced pressure. After removal of all the solvent in the filtrate under reduced pressure was purified by column chromatography (hexane: ethyl acetate: methanol = 15: 5: 1) to give the compound 2a to give a yellow solid. (0.090 g, 89%)

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Diatech Korea Co. Ltd.; Sogang University Research Foundation; Moon, PongJin; Oh, HaNa; Kang, NaNa; Cheon, AeRan; Park, Gye Shin; Park, Hyeong Soon; Pang, Choo Young; (31 pag.)KR101583811; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenecarboxaldehyde

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: To a stirred suspension of p-toluenesulfonyl hydrazide (1eq.) in water (12mL) and three drops of HCl 32%, the formyl or acetyl organometallic precursor (1eq.) was added. The resulting mixture was stirred for 18h at room temperature. The precipitate obtained was washed with water (2¡Á10mL) and dried under vacuum. The hydrazone derivatives were recrystallized from acetone/hexane (1:5) at -18C

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

Reference£º
Article; Concha, Camila; Quintana, Cristobal; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Lopez, Rodrigo; Romanos, Javier; Huentupil, Yosselin; Arancibia, Rodrigo; Polyhedron; vol. 131; (2017); p. 40 – 45;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenecarboxaldehyde

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: In a typical procedure, 1.39 mmol of 2?-hydroxyacetophenone (for 1 and 3) or 2?-hydroxy-4?-methoxyacetophenone (for 2 and 4) were dissolved in 40 ml of methanol. To this solution, 4 equivalent of potassium hydroxide were added and stirred for 15 min at room temperature. Then, 1.40 mmol of the appropriate ferrocenecarboxaldehyde derivative, (i.e. 1-ferrocenecarboxaldehyde for 1 and 2 or 1,1-ferrocenedicarboxaldehyde for 3 and 4) were added. The mixture was stirred during three days at room temperature. Then, methanol was evaporated in vacuum (rotary evaporator) and the crude reaction mixture was submitted to column chromatography (silica gel 60, Ethyl acetate: Hexane = 3:10 v/v).

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

Reference£º
Article; Trujillo, Alexander; Ocayo, Fernanda; Artigas, Vania; Santos, Juan C.; Jara-Ulloa, Paola; Kahlal, Samia; Saillard, Jean-Yves; Fuentealba, Mauricio; Escobar, Carlos A.; Tetrahedron Letters; vol. 58; 5; (2017); p. 437 – 441;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.

General procedure: A 100mL dry, nitrogen purged round bottom flask was charged with the carbonyl compound in dry tetrahydrofuran. Freshly prepared Cp2TiMe2 in toluene was added. The reaction mixture was heated to 80¡ãC for 10h and was monitored by thin layer chromatography. Insoluble precipitate was separated, the solvent evaporated under reduced pressure, and the residue obtained was purified by column chromatography., 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

Reference£º
Article; Singh, Jatinder; Ghosh, Sanjib; Deb, Mayukh; Elias, Anil J.; Journal of Organometallic Chemistry; vol. 818; (2016); p. 85 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various fields.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure.

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

12093-10-6, General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure.

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.,12093-10-6

To a round bottomed flask equipped with a magnetic stirrer bar was added ferrocene carboxaldehyde(535 mg, 2.5 mmol, 1 eq). The flask was then charged with ethanol (4 cm3) and THF (1 cm3). Thered solution was then treated with sodium borohydride (123 mg, 3.2 mmol, 1.3 eq). The flask wasthen sealed and placed under a nitrogen atmosphere. After 30 minutes the solution had changedcolour to an orange and TLC analysis indicated full consumption of the starting material. The flaskwas then concentrated to 90% of original volume in vacuo. The dark orange residue was then takenup in EtOAc (15 cm3) and NaHCO3 (15 cm3). The bi-phasic mixture was transferred to separatingfunnel, the aqueous layer was separated and then back extracted with EtOAc (3 x 5 cm3), thecombined organic washings were then dried over MgSO4, filtered and then concentrated in vacuo togive a yellow solid. The ferrocene methanol was then taken up in 1,3-propanediol (5 cm3), the yellowsolution was then treated with ytterbium (Ill) triflate (77 mg, 0.125 mmol, 5 mol%). The flask wasthen sealed and heated to 100 C. After heating for 10 minutes TLC analysis indicated fullconsumption of the starting material. The flask was cooled to room temperature, diluted with H20(20 cm3) and EtOAc (20 cm3). The organic layer was then separated and the aqueous layer backextracted with EtOAc (3 x 5 cm3). The combined organic layers were then washed with H20 (2018 cm3) and brine (sat) (20 cm3) then dried over MgSO4, filtered then concentrated in vacuo to give an orange solid. Purification was then carried out by silica-gel chromatography eluting with n-Hex 1:1 EtOAc to give the desired product 3-(ferrocenyloxy)propan-lol (1) as an orange powder (514 mg, 74%).?H NIVIR (250 MHz, CDC13); oH: 4.24 (s, 4H), 4.11 (s, 6H), 3.65 (t, 2H, J 5.4 Hz), 3.54 (t, 2HJ=5.4 Hz), 3.65 (t, 2H J = 5.4 Hz), 2.52 (br s, 1H), 1.7 (quin 2H, J = 5.6 Hz); ?3C NIVIR (75 IVIHz, CDC13); Oc: 83.6, 77.3, 71.5, 69.4, 69.3, 69.2, 68.7, 32.0; HRMS (ESI iTOF) calculated for C,4H,8FeO2Na m/z 297.0553 found 297.0560 (m/z + Na); Electrochemical potential: 181 mV.

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; ATLAS GENETICS LIMITED; MARSH, Barrie J.; FROST, Christopher G.; SHARP, Jonathan; WO2015/52516; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

12093-10-6, General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure.

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30., 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.,12093-10-6

General procedure: To a solution of [CpRu(PPh3)2Cl] (1 mol%) and solid aldehyde (1.0 mmol) in toluene (3 ml) was added PhSiH3 (1.2 mmol). The reaction mixture was stirred at reflux temperature under an air atmosphere (the reaction times are indicated in Table 4). Then, TBAF (1.0 mmol) was added and the reaction mixture was stirred at room temperature during 30 min. After evaporation, the reaction mixture was purified by silica gel column chromatography with ethyl acetate:n-hexane (1:3) to afford the corresponding alcohols.

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

Reference£º
Article; Cabrita, Ivania R.; Florindo, Pedro R.; Fernandes, Ana C.; Tetrahedron; vol. 73; 11; (2017); p. 1511 – 1516;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion