Some tips on Ferrocenecarboxylic acid

The chemical industry reduces the impact on the environment during synthesis,1271-42-7,Ferrocenecarboxylic acid,I believe this compound will play a more active role in future production and life.

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

A solution of ferrocenecarboxylic acid (232.1 mg, 1 mmol), DIPEA (680 muL, 4 mmol), TBTU (321.1 mg, 1 mmol) and HOBt (135.1 mg, 1 mmol) in dichloromethane (20 ml) was stirred at room temperature for 1 hour. N-Boc-ethylenediamine (158 muL, 1 mmol) was added and the stirring continued for 2 days. The reaction mixture was washed with NaHCO3, brine and citric acid, the organic layer dried over anhydrous sodium sulfate, filtered and evaporated in a vacuum. The crude product was purified by automated flash chromatography (20 % to 80 % ethyl-acetate in n-hexane), Rf = 0.13, EtOAc : hexane = 1 : 1. Yield: 276.7 mg (0.74 mmol, 74 %) of orange powder, Mr (C18H24FeN2O3) = 372.24. ESI-MS (m/z): 395.0 (M+Na+, 66%), 767.1 (2M+Na+, 67%). 1H NMR (300 MHz, CDCl3) delta/ppm: 6.56 (s, 1H), 5.03 (s, 1H), 4.76-4.62 (m, 2H), 4.41-4.28 (m, 2H), 4.21 (s, 5H), 3.56 – 3.43 (m, 2H), 3.37 (t, J = 5.6 Hz, 2H), 1.46 (s, 9H) 13C NMR (150 MHz, CDCl3) delta/ppm: 171.20, 157.40, 79.95, 76.09, 70.55, 69.90, 68.30, 41.22, 40.82, 28.57. IR (KBr) max/cm-1: 3374, 3245, 3002, 2976, 2928, 2880, 1687, 1640, 1536, 1453, 1364, 1267, 1170, 1018, 819, 718, 504, 486. IR (CHCl3, 40 mmol/L) max/cm-1: 3449, 3364, 3008, 2982, 2930, 1700, 1643, 1517, 1368, 1285, 1250, 1167, 998, 826, 483. UV-Vis (CHCl3) lambdamax (epsilon): 443 (219), 350 (431), 306 (1000).

The chemical industry reduces the impact on the environment during synthesis,1271-42-7,Ferrocenecarboxylic acid,I believe this compound will play a more active role in future production and life.

Reference:
Article; Juraj, Natalija P.; Le Pennec, Jeremy; Peri?, Berislav; Kirin, Sre?ko I.; Croatica Chemica Acta; vol. 90; 4; (2017); p. 613 – 623;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxylic acid, and cas is 1271-42-7, its synthesis route is as follows.

Ferrocenecarboxylicacid 46 (500 mg, 2.2 mmol) wasstirred with oxalyl chloride (634 mg, 5.0 mmol) for 1 h. The evaporationresidue, in dry THF (5.0 mL), was added dropwise to saturated NH3 inEt2O (25 mL). After 15 min, H2O (20 mL) was added andorganic layer was washed thrice (H2O). Drying and evaporationgave ferrocenecarboxamide (370 mg, 74%) as a pale orange solid: mp 168-169C(lit.10 mp 168-171C); 1H NMR ((CD3)2SO)d 4.15 (5 H, s, Fc?-H5), 4.32 (2 H, br, Fc3,4-H2), 4.74 (2 H, br, Fc 2,5-H2), 6.91 (1 H, br, NH),7.28 (1 H, br, NH); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 68.49 (Fc 2,5-C2),69.31 (Fc?-C5), 69.91 (Fc 3,4-C2), 76.42 (Fc 1-C), 171.01(C=O). This material (352 mg, 1.5 mmol) was stirred with POCl3 (3.5mL) at 120C for 2 h, followed by cooling to 0C and quench with H2O(1.0 mL). The mixture was diluted with EtOAc and washed thrice with H2O.Drying and evaporation gave 47 (360mg, 99%) as a dark orange solid: mp 105-107C (lit.11 mp 106-106.5C); 1HNMR ((CD3)2SO) d 4.34(5 H, s, Fc?-H5), 4.50 (2 H, s, Fc 3,4-H2), 4.83 (2 H, s,Fc 2,5-H2); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 51.05 (Fc 1-C),70.32 (Fc?-C5), 71.00 (Fc 3,4-C2), 71.61 (Fc 2,5-C2),120.21 (CN).

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Reference:
Article; Paine, Helen A.; Nathubhai, Amit; Woon, Esther C.Y.; Sunderland, Peter T.; Wood, Pauline J.; Mahon, Mary F.; Lloyd, Matthew D.; Thompson, Andrew S.; Haikarainen, Teemu; Narwal, Mohit; Lehtioe, Lari; Threadgill, Michael D.; Bioorganic and Medicinal Chemistry; vol. 23; 17; (2015); p. 5891 – 5908;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : Ferrocenecarboxylic acid

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Name is Ferrocenecarboxylic acid, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-42-7, its synthesis route is as follows.

To a suspension of ferrocenylcarboxylic acid (60 mg, 0.26 mmol,3 equiv) in 1 mL of dry CH2Cl2 was added at room temperatureoxalyl chloride (225 mL, 2.65 mmol, 27 equiv). After 30 min at roomtemperature, the solution took a deep red color. The mixture wasconcentrated in vaccuo to remove excess oxalyl chloride. Podophyllotoxin(38 mg, 90 mmol, 1 equiv) was solubilizedequiv in1.5 mL of dry CH2Cl2 and Et3N (15 mL, 0.11 mmol, 1.2 equiv) wasadded. To this mixture was added at 0 C ferrocenoyl chloride in2 mL of CH2Cl2. Then a few crystals of DMAP were added and themixture was stirred at 0 C for 30 min and at room temperature for1 h. Reaction was quenched by addition of water, extracted withCH2Cl2 (3), washed with diluted HCl (~0.1 N), dried over MgSO4and concentrated under vacuum. The crude product was purifiedby preparative TLC on silica (AcOEt/Cyclohexane 2/3) to yield 35 mgof the desired compound as an orange powder (60%). 1H NMR(400 MHz, CDCl3): delta (ppm) 6.90 (s, 1H), 6.58 (s, 1H), 6.44 (s, 2H),6.04-5.97 (m, 3H), 4.85 (dt, J = 2.5, 1.3 Hz, 1H), 4.81 (dt, J= 2.5,1.3 Hz, 1H), 4.64 (d, J= 4.3 Hz, 1H) 4.50-4.44 (m, 3H), 4.30 (m, 1H),4.25 (s, 5H), 3.81 (s, 3H), 3.80 (s, 6H), 3.02e2.87 (m, 2H). 13C NMR(101 MHz, CDCl3): delta (ppm) 173.8, 172.6, 152.8, 148.3, 147,8, 137.4,135.1, 132.5, 129.0, 109.9, 108.4, 107.1, 101.8, 73.5, 72.1, 72.0, 71.8,70.4, 70.3, 70.0, 61.0, 56.3, 45.8, 43.9, 39.1. IR (neat, cm-1): 1780,1711, 1485, 1240, 1128. Exact mass (C33H30FeO9): calculated649.1132 (M +Na)+, measured 649.1121.

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Reference:
Article; Beauperin, Matthieu; Polat, Dilan; Roudesly, Fares; Top, Siden; Vessieres, Anne; Oble, Julie; Jaouen, Gerard; Poli, Giovanni; Journal of Organometallic Chemistry; vol. 839; (2017); p. 83 – 90;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxylic acid, and cas is 1271-42-7, its synthesis route is as follows.

a. Ferrocenecarboxylic acid (11.5 g, 0.05 mol) was mixed with 100 mL of dichloromethane (DCM) under ice bath and stirred well.N-hydroxysuccinimide (NHS) (7.0 g, 0.06 mol) was added to the above reaction system under vigorous stirring.1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) (11.5 g, 0.06 mol).The reaction was carried out for 4 to 6 hours in an ice bath, the solution was gradually clarified, and the reaction was monitored by TLC.After completion of the reaction, suction filtration was performed to obtain a dichloromethane solution of the intermediate (1).

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Reference:
Patent; Shandong University; Yan Bing; Pan Xiujiao; Jiang Cuijuan; Wang Shenqing; Kong Long; Zhai Shumei; Hu Chun; Zhou Li; (17 pag.)CN109288860; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-42-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

In a three-necked flask, 4.6 g (0.02 mmol) of dry ferrocenecarboxylic acid and 80 mL of anhydrous benzene were added.Under nitrogen protection,6.24 g (0.03 mmol) of phosphorus pentachloride was slowly added in several portions, and stirred at room temperature for 3 h.The benzene is distilled off under reduced pressure, and petroleum ether (60-90 C) is extracted to obtain a deep red solution, distilled under reduced pressure, and cooled.Dark red needle crystals are precipitated, yield 80%

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

Reference:
Patent; Guilin Medical University; Huang Wanyun; Liao Ying; Peng Xiangyan; Yin Penglong; Liao Yueying; (13 pag.)CN104788503; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-42-7

The chemical industry reduces the impact on the environment during synthesis,1271-42-7,Ferrocenecarboxylic acid,I believe this compound will play a more active role in future production and life.

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

0120] Ferrocene (6.0 g, 32 mmol) and potassium tert-butoxide (0.46 g, 4.08 mmol) were completely dissolved in dryTHF (300 mL). The orange solution was cooled to -78C when tert-butyllithium (34.0 mL, 64.5 mmol, 1.9 M in pentane)was added dropwise over a period of 15 min, with the temperature maintained below -70C. The reaction mixture wasstirred at -78C for 1 h and then poured on a slurry of dry ice (excess) and diethyl ether. The mixture was warmed toroom temperature overnight and extracted with an aqueous solution of sodium hydroxide (0.75 N, 4 x 250 mL). Thecombined aqueous layers were neutralized with hydrochloric acid (pH > 4) and the resulting orange solid was extractedwith Et2O (4 x 250 mL) until the organic layer remained colourless. The combined organic layers were filtered to removetraces of ferrocenedicarboxylic acid, dried over MgSO4, filtered and the solvent was evaporated under reduced pressureto give ferrocenecarboxylic acidas an orange solid in 35% yield. After suspending the ferrocenecarboxylic acid (462 mg,2.01 mmol) in dry CH2Cl2 (23 mL), oxalyl chloride (1100 mL, 13.64 mmol) in dry CH2Cl2 (10 mL) was added dropwiseto the reaction mixture whereby the orange suspension turned dark red. The reaction mixture was refluxed for 2 h andthen stirred overnight at room temperature. The solvent was then removed under vacuum. The product was not purifiedand used immediately for the next synthetic step.

The chemical industry reduces the impact on the environment during synthesis,1271-42-7,Ferrocenecarboxylic acid,I believe this compound will play a more active role in future production and life.

Reference:
Patent; Universitaet Zuerich; The University of Melbourne; Gasser, Gilles; Gasser, Robin B.; Hess, Jeannine; Patra, Malay; Jabbar, Abdul; EP2821412; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-42-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Ferrocenecarbonyl chloride was prepared in a schlenk line system to ensure moisture free environment as reported before [21]. In a typical reaction, ferrocene carboxylic acid (10.3601 g, 45.0 mmol) was firstly dried under vacuum at 50 C for 30 min and then dissolved in 75.0 mL of freshly distilled DCM. After that, pyridine(7.20 mL, 90.36 mmol) was added to the previous solution followed by the dropwise addition of oxalyl chloride (7.75 mL, 90.36 mmol) at 25 C. The reaction mixture was stirred for 30 min first at 25 C and then refluxed for 5 h. The contents of the reaction flask were evaporated under vacuum and petroleum ether (80.0 mL) was added. The mixture was stirred for 2 h at 90 C at this stage. At last, the solvent was evaporated to get the dried ferrocene monocarbonyl chloride.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

Reference:
Article; Khan, Amin; Wang, Li; Yu, Haojie; Haroon, Muhammad; Ullah, Raja Summe; Nazir, Ahsan; Elshaarani, Tarig; Usman, Muhammad; Fahad, Shah; Naveed, Kaleem-ur-Rehman; Journal of Organometallic Chemistry; vol. 880; (2019); p. 124 – 133;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

The chemical industry reduces the impact on the environment during synthesis,1271-42-7,Ferrocenecarboxylic acid,I believe this compound will play a more active role in future production and life.

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

under ice-cooling, 11.5 g (0.05 mol) of ferrocenecarboxylic acid was mixed with 100 mL of dichloromethane (DCM) and homogenized with stirring. Under strong stirring, 7.0 g (0.06 mol) of N-hydroxysuccinimide was added to the above reaction system.(NHS), 11.5g (0.06mol)1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl).Under the ice bath,After 4 to 6 hours of reaction, the solution gradually clarified and the reaction was monitored by TLC. After the reaction is completed, suction filtration gives the dichloromethane of the intermediate (1).

The chemical industry reduces the impact on the environment during synthesis,1271-42-7,Ferrocenecarboxylic acid,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; Shandong University; Yan Bing; Zhang Congcong; Wang Shenqing; Jiang Cuijuan; Zhai Shumei; Zhang Qiu; (16 pag.)CN107722067; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenecarboxylic acid

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenecarboxylic acid, cas is 1271-42-7 its synthesis route is as follows.

Briefly, to a solution of Fc-COOH (5.65 mmol, 1.3 g) in dry DCM at 0 C, Et3N (6.19 mmol, 0.87 mL), HOBt (6.19 mmol, 0.84 g) and HBTU (6.19 mmol, 2.4 g) were added, reacted 1 h at 0 C, then 1 g H-Gly-OMe by treatment with Et3N in DCM (5 mL) was added.

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Zhou, Binbin; Li, Chun-Lan; Hao, Yuan-Qiang; Johnny, Muya Chabu; Liu, You-Nian; Li, Juan; Bioorganic and Medicinal Chemistry; vol. 21; 2; (2013); p. 395 – 402;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-42-7

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxylic acid, and cas is 1271-42-7, its synthesis route is as follows.

A solution of ferrocene carboxylic acid (2.3 g, 10 mmol) in dry dichloromethane (20 ml.) was treated with oxalyl chloride dropwise (1.8 ml_, 20 mmol) at 0 C under nitrogen with the addition of four drops of DMF. The reaction mixture was returned to r.t. and stirred for 3 hours. The solvent and the excess oxalyl chloride was removed under nitrogen, and the resulting red solid was redissolved to fresh dry dichloromethane (20 ml_). Tetrabutylammoniun bromide (12 mg, 0.03 mmol) was added followed by the addition of a NaN3 solution (1 g, 15 mmol) in water (5 ml_). The reaction mixture was stirred under nitrogen and at r.t for a further 18 h. The reaction was quenched by the addition of water (50 ml.) and the organic phase was separated, and the aqueous was further extracted with dichloromethane (2 x 20 ml_). The combined organic phase was washed with brine, dried with Na2S04 and the solvent was removed under vacuum. The desired azide was isolated by flash column chromatography eluting with dichloromethane:hexane (1 :1 ). Yield: 78%. NMR (CDCIs, ppm): 1H (500 MHz) 4.78, 4.55, 4.05; 13C (126 MHz) 176.1 , 89.0, 76.3, 78.0, 80.1.

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; NATIONAL CENTRE FOR SCIENTIFIC RESEARCH “DEMOKRITOS”; PELECANOU ZAMPARA, Maria; SAGNOU, Marina; PAPADOPOULOS, Minas; PIRMETTIS, Ioannis; MAVROIDI, Barbara; SHEGANI, Antonio; (38 pag.)WO2019/180200; (2019); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion