Analyzing the synthesis route of 1271-42-7

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxylic acid,1271-42-7,Molecular formula: C11H10FeO2,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

Ferrocene carboxylic acid (2.0 g, 8.7 mmol) were dissolved in CH3CN (5 mL) and the solution was degassed with argon. To this solution, N-hydroxysuccinimide (1.0 g, 8.7 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (1.7 g, 8.7 mmol) were added, and the solution was stirred overnight at room temperature. After the removal of the solvent, the reaction mixture was purified by silica gel column chromatography (CH2Cl2) to give 2(6.6 mmol, 76 %).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Article; Takada, Tadao; Tochi, Takaaki; Nakamura, Mitsunobu; Yamana, Kazushige; Bioorganic and Medicinal Chemistry Letters; vol. 24; 12; (2014); p. 2661 – 2663;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

Under a nitrogen atmosphere, to a stirred solution of ferrocene carboxylic acid (1.20 g, 5.2 mmol) in freshly distillated dichloromethane (10 ml), was added dropwise oxalyl chloride (4 ml, 46.8 mmol), at 0 C. The resulting mixture was stirred at ambient temp. for 4 h, then the solvent was removed under reduce pressure. The solution was triturated with hot pentane, then the mixture was filtered, and the filtrate was concentrated under reduced pressure. The resulting residue was crystallized from pentane to give a red crystalline solid (1.25 g, 97%): mp 134 C. 1H-NMR (300 MHz, CDCl3): delta 4.36 (s, 5H, C5H5), 4.66 (s, 2H, C5H4), 4.94 (s, 2H, C5H4).

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Review; Saied, Nadia Malek; Mejri, Najoua; El Aissi, Radhia; Benoist, Eric; Saidi, Mouldi; European Journal of Medicinal Chemistry; vol. 97; (2015); p. 280 – 288;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxylic acid,1271-42-7,Molecular formula: C11H10FeO2,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

Oxalyl chloride (0.058 mL, 0.66 mmol) was added dropwise over 1 min to a solution of ferrocene monocarboxylic acid (0.0777 g, 0.338 mmol) in dichloromethane (3.0 mL) and N,N-dimethylformamide (1-3 drops). The mixture stirred for 30 min and concentrated with a stream of nitrogen gas, and then subjected to vacuum for 10 min. The resultant crude oil was used without further purification.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Article; Jones, Ian M.; Knipe, Peter C.; Michaelos, Thoe; Thompson, Sam; Hamilton, Andrew D.; Molecules; vol. 19; 8; (2014); p. 11316 – 11332;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1271-42-7

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Triethylamine (0.1ml, 0.72mmol) was injected dropwise into the CH2Cl2 (40ml) suspension of carboxyferrocene 3 (0.5g, 2.17mmol) at 0C under N2 atmosphere. Oxalyl chloride (0.7ml, 8.2mmol) was then added dropwise into the solution. The reaction mixture was stirred at room temperature (r. t.) overnight. The solvent was then removed in vacuo, and the red solid residue, crude chlorocarbonylferrocene, was then dissolved in dry CH2Cl2 (20ml), added dropwise into the CH2Cl2 solution (10ml) of 9 (0.4g, 1.83mmol) and Et3N (1.5ml, 10.7mmol). The obtained mixture was further stirred overnight at r. t. under N2 atmosphere, and then washed successively with saturated NaHCO3 solution (1¡Á100ml) and distilled water (3¡Á100ml). The organic layer was dried with anhydrous Na2SO4, and vacuumed to provide the crude product 10 that was then purified by column chromatography with CH2Cl2/methanol (0%?5%) as the eluent and obtained as brown sticky oil. Yield: 0.7g, 89%. 1H NMR (400MHz, CDCl3, 25C, TMS), deltappm: 6.28 (t, J=9.3Hz, 1H, NHCO), 4.68 (t, J=3.8Hz, 2H, sub. Cp, Cp=eta [5]-C5H5), 4.32 (t, J=3.4Hz, 2H, sub. Cp), 4.19 (s, 5H, free Cp), 3.67-3.55 (m, 14H, 7¡ÁCH2), 3.36 (t, J=10.1Hz, 2H, CH2N3). 13C NMR (100MHz, CDCl3, 25C, TMS), deltappm: 170.4 (CONH), 70.8, 70.7, 70.4, 70.3, 69.8, 68.3 (Cp and CH2), 50.8 (CH2N3), 39.4 (NHCH2). MS (ESI, m/z), calcd. for C19H16O4N4Fe: 430.3; found: 453.1 (M+Na+). Selected IR (KBr, cm-1): 3335 (nuNH), 2869 (nuCH2), 2105 (nuN3), 1634 (nuC=O), 1539, 1453 (nuC=C, Cp), 1299 (nuC-N), 1106 (nuC-O-C), 823 (nuFeII).

1271-42-7, The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liu, Yue; Mu, Shengdong; Liu, Xiong; Ling, Qiangjun; Hang, Chaodong; Ruiz, Jaime; Astruc, Didier; Gu, Haibin; Tetrahedron; vol. 74; 37; (2018); p. 4777 – 4789;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO240,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

Triethylamine (0.1ml, 0.72mmol) was injected dropwise into the CH2Cl2 (40ml) suspension of carboxyferrocene 3 (0.5g, 2.17mmol) at 0C under N2 atmosphere. Oxalyl chloride (0.7ml, 8.2mmol) was then added dropwise into the solution. The reaction mixture was stirred at room temperature (r. t.) overnight. The solvent was then removed in vacuo, and the red solid residue, crude chlorocarbonylferrocene, was then dissolved in dry CH2Cl2 (20ml), added dropwise into the CH2Cl2 solution (10ml) of 9 (0.4g, 1.83mmol) and Et3N (1.5ml, 10.7mmol). The obtained mixture was further stirred overnight at r. t. under N2 atmosphere, and then washed successively with saturated NaHCO3 solution (1¡Á100ml) and distilled water (3¡Á100ml). The organic layer was dried with anhydrous Na2SO4, and vacuumed to provide the crude product 10 that was then purified by column chromatography with CH2Cl2/methanol (0%?5%) as the eluent and obtained as brown sticky oil. Yield: 0.7g, 89%. 1H NMR (400MHz, CDCl3, 25C, TMS), deltappm: 6.28 (t, J=9.3Hz, 1H, NHCO), 4.68 (t, J=3.8Hz, 2H, sub. Cp, Cp=eta [5]-C5H5), 4.32 (t, J=3.4Hz, 2H, sub. Cp), 4.19 (s, 5H, free Cp), 3.67-3.55 (m, 14H, 7¡ÁCH2), 3.36 (t, J=10.1Hz, 2H, CH2N3). 13C NMR (100MHz, CDCl3, 25C, TMS), deltappm: 170.4 (CONH), 70.8, 70.7, 70.4, 70.3, 69.8, 68.3 (Cp and CH2), 50.8 (CH2N3), 39.4 (NHCH2). MS (ESI, m/z), calcd. for C19H16O4N4Fe: 430.3; found: 453.1 (M+Na+). Selected IR (KBr, cm-1): 3335 (nuNH), 2869 (nuCH2), 2105 (nuN3), 1634 (nuC=O), 1539, 1453 (nuC=C, Cp), 1299 (nuC-N), 1106 (nuC-O-C), 823 (nuFeII).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Article; Liu, Yue; Mu, Shengdong; Liu, Xiong; Ling, Qiangjun; Hang, Chaodong; Ruiz, Jaime; Astruc, Didier; Gu, Haibin; Tetrahedron; vol. 74; 37; (2018); p. 4777 – 4789;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO316,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

under ice-cooling, 11.5 g (0.05 mol) of ferrocenecarboxylic acid was mixed with 100 mL of dichloromethane (DCM) and homogenized with stirring. Under strong stirring, 7.0 g (0.06 mol) of N-hydroxysuccinimide was added to the above reaction system.(NHS), 11.5g (0.06mol)1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl).Under the ice bath,After 4 to 6 hours of reaction, the solution gradually clarified and the reaction was monitored by TLC. After the reaction is completed, suction filtration gives the dichloromethane of the intermediate (1).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Patent; Shandong University; Yan Bing; Zhang Congcong; Wang Shenqing; Jiang Cuijuan; Zhai Shumei; Zhang Qiu; (16 pag.)CN107722067; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxylic acid,1271-42-7,Molecular formula: C11H10FeO2,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

In a 50mL three necks round bottom flask and under nitrogen atmosphere, 1mmol of ferrocenecarboxylic acid was dissolved in 15mL of dry dichloromethane at room temperature. To this solution, 170-200muL of oxalyl chloride was added dropwise and stirred overnight. The solution changed from orange to dark red. The reaction mixture was filtered in a fritted funnel and the filtrate collected. In a separate 100mL three necks round flask under nitrogen, 1.0mmol of the 4-X-phenol and 1.0mmol of pyridine were dissolved in 10-15mL of dichloromethane. To this solution, the ferrocenecarbonyl chloride solution prepared previously was added dropwise. The solution was stir 6-12hin the dark, under nitrogen atmosphere, and at room temperature. Thin layer chromatography (TLC) was used to monitor the reaction. After the reaction was finished, the mixture was filtered in a fritted funnel with a pad of celite. The filtrate collected was washed with 3¡Á5mL 1N HCl to remove pyridine and other by-products. The organic layer containing the compound was purified by column chromatography, using Silica gel and eluted with dichloromethane and isolated in 40-45% yield.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Article; Vera, Jose L.; Rullan, Jorge; Santos, Natasha; Jimenez, Jesus; Rivera, Joshua; Santana, Alberto; Briggs, Jon; Rheingold, Arnold L.; Matta, Jaime; Melendez, Enrique; Journal of Organometallic Chemistry; vol. 749; (2014); p. 204 – 214;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-42-7

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Ferrocenecarboxylic acid, cas is 1271-42-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-42-7

Following the similar procedure reported by Guimond et. al 5 To a solution of ferrocecarboxylic acid (2.300 g, 10.0 mmol) in dry CH2Cl2 (30 mL) at 0 C under N2 was added dropwise oxalyl chloride (1.14 mL, 12.0 mmol) followed by a catalytic amount of dry DMF (2 drops). The reaction was allowed to stir at rt until completion (typically 8 h). The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride.

As the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Reference£º
Article; Liu, Hua-Yu; Mou, Rui-Qi; Sun, Chuan-Zhi; Zhang, Sheng-Yan; Guo, Dian-Shun; Tetrahedron Letters; vol. 57; 42; (2016); p. 4676 – 4679;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-42-7

With the complex challenges of chemical substances, we look forward to future research findings about 1271-42-7,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxylic acid, and cas is 1271-42-7, its synthesis route is as follows.,1271-42-7

According to the preparation method disclosed in Aanl. Biochem., 218, 436(1994), a mixture of 1,000 mg of ferrocenecarboxylic acid(4.35 mmol) and 560 mg of N-hydroxysuccineimide(4.87 mmol) was dissolved in 40 ml of distilled 1,4-dioxane, added 100 mg of dicyclohexylcarbodiimide dissolved in 10 ml of distilled 1,4-dioxane, and stirred for 12 hours under a nitrogen atmosphere. The resulting solution was filtered and the solid thus obtained was purified by silicagel chromatography using a mixture of n-hexane and ethylacetate(1:1, Rf=0.40) as an eluent to obtain 1.39 g of the title compound as a light yellow solid (Yield: 99%). [00029] 1H NMR(CDCl3; 300 MHz) delta 2.88(4H, br s), 4.39(5H, s), 4.57(2H, m), 495(2H, m) ppm

With the complex challenges of chemical substances, we look forward to future research findings about 1271-42-7,belong iron-catalyst compound

Reference£º
Patent; Mitocon Ltd.; US6809201; (2004); B2;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenecarboxylic acid,1271-42-7,Molecular formula: C11H10FeO2,mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

Ferrocenecarboxylicacid 46 (500 mg, 2.2 mmol) wasstirred with oxalyl chloride (634 mg, 5.0 mmol) for 1 h. The evaporationresidue, in dry THF (5.0 mL), was added dropwise to saturated NH3 inEt2O (25 mL). After 15 min, H2O (20 mL) was added andorganic layer was washed thrice (H2O). Drying and evaporationgave ferrocenecarboxamide (370 mg, 74%) as a pale orange solid: mp 168-169C(lit.10 mp 168-171C); 1H NMR ((CD3)2SO)d 4.15 (5 H, s, Fc?-H5), 4.32 (2 H, br, Fc3,4-H2), 4.74 (2 H, br, Fc 2,5-H2), 6.91 (1 H, br, NH),7.28 (1 H, br, NH); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 68.49 (Fc 2,5-C2),69.31 (Fc?-C5), 69.91 (Fc 3,4-C2), 76.42 (Fc 1-C), 171.01(C=O). This material (352 mg, 1.5 mmol) was stirred with POCl3 (3.5mL) at 120C for 2 h, followed by cooling to 0C and quench with H2O(1.0 mL). The mixture was diluted with EtOAc and washed thrice with H2O.Drying and evaporation gave 47 (360mg, 99%) as a dark orange solid: mp 105-107C (lit.11 mp 106-106.5C); 1HNMR ((CD3)2SO) d 4.34(5 H, s, Fc?-H5), 4.50 (2 H, s, Fc 3,4-H2), 4.83 (2 H, s,Fc 2,5-H2); 13C NMR ((CD3)2SO)(HSQC / HMBC) d 51.05 (Fc 1-C),70.32 (Fc?-C5), 71.00 (Fc 3,4-C2), 71.61 (Fc 2,5-C2),120.21 (CN).

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenecarboxylic acid,belong iron-catalyst compound

Reference£º
Article; Paine, Helen A.; Nathubhai, Amit; Woon, Esther C.Y.; Sunderland, Peter T.; Wood, Pauline J.; Mahon, Mary F.; Lloyd, Matthew D.; Thompson, Andrew S.; Haikarainen, Teemu; Narwal, Mohit; Lehtioe, Lari; Threadgill, Michael D.; Bioorganic and Medicinal Chemistry; vol. 23; 17; (2015); p. 5891 – 5908;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion