Downstream synthetic route of 1271-42-7

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Briefly, to a solution of Fc-COOH (5.65 mmol, 1.3 g) in dry DCM at 0 C, Et3N (6.19 mmol, 0.87 mL), HOBt (6.19 mmol, 0.84 g) and HBTU (6.19 mmol, 2.4 g) were added, reacted 1 h at 0 C, then 1 g H-Gly-OMe by treatment with Et3N in DCM (5 mL) was added.

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

Reference£º
Article; Zhou, Binbin; Li, Chun-Lan; Hao, Yuan-Qiang; Johnny, Muya Chabu; Liu, You-Nian; Li, Juan; Bioorganic and Medicinal Chemistry; vol. 21; 2; (2013); p. 395 – 402;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about Ferrocenecarboxylic acid

With the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Ferrocenecarboxylic acid, cas is 1271-42-7, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-42-7

Will ferrocenecarboxylic acid (0.46g, 2mmol),N,N-Dicyclohexyl-carbodiimide (DCC, 0.453 g, 2.2 mmol)Add 1-hydroxybenzotriazole (HOBt, 0.337 g, 2.5 mmol) to a 100 mL round bottom flask and add 20 mLThe dried tetrahydrofuran was added and the mixture was stirred in an ice bath. 10 mL of a dry tetrahydrofuran solution containing DMAP (0.268 g, 2.2 mmol) was slowly added dropwise to the reaction system. After stirring in an ice bath for 30 minutes, the reaction was naturally warmed to room temperature. After the TLC detection reaction was completed, the reaction solution was concentrated under reduced pressure, and the residue was directly separated by column.(V petroleum ether: Ethyl acetate V, 5:1-2:1) Elution of the mobile phase yields 0.638 g of compound Fc-D1., Yield: 92%.

With the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Reference£º
Patent; Chinese Academy Of Sciences Fujian Structure Of Matter Institute; Yong Jianping; Lu Canzhong; (10 pag.)CN103319543; (2018); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-42-7

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Preparation of Fc-NHS: (0147) Fc-NHS was synthesized following a reported method (C. Feng, G. L. Lu, Y. J. Li, X. Y. Huang, Langmuir 2013, 29, 10922-10931). Fc-COOH (49.9 mg, 0.22 mmol), EDC (58.6 mg, 0.32 mmol), and NHS (37.5 mg, 0.32 mmol) were dissolved in dry DCM (5 mL). The reaction mixture was stirred for 24 h at room temperature. After filtering, the filtrate was concentrated and dried in vacuo. Fc-NHS was obtained by silica gel column chromatography (dichloromethane:methanol=10:1) as an orange solid. (0148) 1H-NMR (400 MHz, CDCl3, 298 K): delta=2.93 (s, 4H, -CH2-CH2-), 4.42 (s, 5H, Cp), 4.60 (m, 2H, Cp), 4.97 (m, 2H, Cp). (0149) Preparation of Fc-CONH-(CH2)2-NH2:

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Xiong, May Pang; Liu, Zhi; Wang, Yan; (39 pag.)US2016/184344; (2016); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-42-7

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

To a suspension of ferrocenylcarboxylic acid (60 mg, 0.26 mmol,3 equiv) in 1 mL of dry CH2Cl2 was added at room temperatureoxalyl chloride (225 mL, 2.65 mmol, 27 equiv). After 30 min at roomtemperature, the solution took a deep red color. The mixture wasconcentrated in vaccuo to remove excess oxalyl chloride. Podophyllotoxin(38 mg, 90 mmol, 1 equiv) was solubilizedequiv in1.5 mL of dry CH2Cl2 and Et3N (15 mL, 0.11 mmol, 1.2 equiv) wasadded. To this mixture was added at 0 C ferrocenoyl chloride in2 mL of CH2Cl2. Then a few crystals of DMAP were added and themixture was stirred at 0 C for 30 min and at room temperature for1 h. Reaction was quenched by addition of water, extracted withCH2Cl2 (3), washed with diluted HCl (~0.1 N), dried over MgSO4and concentrated under vacuum. The crude product was purifiedby preparative TLC on silica (AcOEt/Cyclohexane 2/3) to yield 35 mgof the desired compound as an orange powder (60%). 1H NMR(400 MHz, CDCl3): delta (ppm) 6.90 (s, 1H), 6.58 (s, 1H), 6.44 (s, 2H),6.04-5.97 (m, 3H), 4.85 (dt, J = 2.5, 1.3 Hz, 1H), 4.81 (dt, J= 2.5,1.3 Hz, 1H), 4.64 (d, J= 4.3 Hz, 1H) 4.50-4.44 (m, 3H), 4.30 (m, 1H),4.25 (s, 5H), 3.81 (s, 3H), 3.80 (s, 6H), 3.02e2.87 (m, 2H). 13C NMR(101 MHz, CDCl3): delta (ppm) 173.8, 172.6, 152.8, 148.3, 147,8, 137.4,135.1, 132.5, 129.0, 109.9, 108.4, 107.1, 101.8, 73.5, 72.1, 72.0, 71.8,70.4, 70.3, 70.0, 61.0, 56.3, 45.8, 43.9, 39.1. IR (neat, cm-1): 1780,1711, 1485, 1240, 1128. Exact mass (C33H30FeO9): calculated649.1132 (M +Na)+, measured 649.1121.

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

Reference£º
Article; Beauperin, Matthieu; Polat, Dilan; Roudesly, Fares; Top, Siden; Vessieres, Anne; Oble, Julie; Jaouen, Gerard; Poli, Giovanni; Journal of Organometallic Chemistry; vol. 839; (2017); p. 83 – 90;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-42-7

The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

A solution of ferrocenecarboxylic acid (232.1 mg, 1 mmol), DIPEA (680 muL, 4 mmol), TBTU (321.1 mg, 1 mmol) and HOBt (135.1 mg, 1 mmol) in dichloromethane (20 ml) was stirred at room temperature for 1 hour. N-Boc-ethylenediamine (158 muL, 1 mmol) was added and the stirring continued for 2 days. The reaction mixture was washed with NaHCO3, brine and citric acid, the organic layer dried over anhydrous sodium sulfate, filtered and evaporated in a vacuum. The crude product was purified by automated flash chromatography (20 % to 80 % ethyl-acetate in n-hexane), Rf = 0.13, EtOAc : hexane = 1 : 1. Yield: 276.7 mg (0.74 mmol, 74 %) of orange powder, Mr (C18H24FeN2O3) = 372.24. ESI-MS (m/z): 395.0 (M+Na+, 66%), 767.1 (2M+Na+, 67%). 1H NMR (300 MHz, CDCl3) delta/ppm: 6.56 (s, 1H), 5.03 (s, 1H), 4.76-4.62 (m, 2H), 4.41-4.28 (m, 2H), 4.21 (s, 5H), 3.56 – 3.43 (m, 2H), 3.37 (t, J = 5.6 Hz, 2H), 1.46 (s, 9H) 13C NMR (150 MHz, CDCl3) delta/ppm: 171.20, 157.40, 79.95, 76.09, 70.55, 69.90, 68.30, 41.22, 40.82, 28.57. IR (KBr) max/cm-1: 3374, 3245, 3002, 2976, 2928, 2880, 1687, 1640, 1536, 1453, 1364, 1267, 1170, 1018, 819, 718, 504, 486. IR (CHCl3, 40 mmol/L) max/cm-1: 3449, 3364, 3008, 2982, 2930, 1700, 1643, 1517, 1368, 1285, 1250, 1167, 998, 826, 483. UV-Vis (CHCl3) lambdamax (epsilon): 443 (219), 350 (431), 306 (1000).

The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Juraj, Natalija P.; Le Pennec, Jeremy; Peri?, Berislav; Kirin, Sre?ko I.; Croatica Chemica Acta; vol. 90; 4; (2017); p. 613 – 623;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-42-7

As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-42-7,Ferrocenecarboxylic acid,as a common compound, the synthetic route is as follows.

under ice-cooling, 11.5 g (0.05 mol) of ferrocenecarboxylic acid was mixed with 100 mL of dichloromethane (DCM) and homogenized with stirring. Under strong stirring, 7.0 g (0.06 mol) of N-hydroxysuccinimide was added to the above reaction system.(NHS), 11.5g (0.06mol)1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC.HCl).Under the ice bath,After 4 to 6 hours of reaction, the solution gradually clarified and the reaction was monitored by TLC. After the reaction is completed, suction filtration gives the dichloromethane of the intermediate (1).

As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

Reference£º
Patent; Shandong University; Yan Bing; Zhang Congcong; Wang Shenqing; Jiang Cuijuan; Zhai Shumei; Zhang Qiu; (16 pag.)CN107722067; (2018); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Brief introduction of 1271-42-7

The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

0120] Ferrocene (6.0 g, 32 mmol) and potassium tert-butoxide (0.46 g, 4.08 mmol) were completely dissolved in dryTHF (300 mL). The orange solution was cooled to -78C when tert-butyllithium (34.0 mL, 64.5 mmol, 1.9 M in pentane)was added dropwise over a period of 15 min, with the temperature maintained below -70C. The reaction mixture wasstirred at -78C for 1 h and then poured on a slurry of dry ice (excess) and diethyl ether. The mixture was warmed toroom temperature overnight and extracted with an aqueous solution of sodium hydroxide (0.75 N, 4 x 250 mL). Thecombined aqueous layers were neutralized with hydrochloric acid (pH > 4) and the resulting orange solid was extractedwith Et2O (4 x 250 mL) until the organic layer remained colourless. The combined organic layers were filtered to removetraces of ferrocenedicarboxylic acid, dried over MgSO4, filtered and the solvent was evaporated under reduced pressureto give ferrocenecarboxylic acidas an orange solid in 35% yield. After suspending the ferrocenecarboxylic acid (462 mg,2.01 mmol) in dry CH2Cl2 (23 mL), oxalyl chloride (1100 mL, 13.64 mmol) in dry CH2Cl2 (10 mL) was added dropwiseto the reaction mixture whereby the orange suspension turned dark red. The reaction mixture was refluxed for 2 h andthen stirred overnight at room temperature. The solvent was then removed under vacuum. The product was not purifiedand used immediately for the next synthetic step.

The synthetic route of 1271-42-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Universitaet Zuerich; The University of Melbourne; Gasser, Gilles; Gasser, Robin B.; Hess, Jeannine; Patra, Malay; Jabbar, Abdul; EP2821412; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion