Downstream synthetic route of Acetylferrocene

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of ferrocenylketone (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5-2 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give the pure products. In general, the yields were 68-86 %. Because of the relatively low activity of some ketones, their reactions at room temperature may be incomplete. They should be reacted in refluxing methanol. The reaction could be monitored by TLC.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

Reference:
Article; Ling, Li; Hu, Jianfeng; Huo, Yanhong; Zhang, Hao; Tetrahedron; vol. 73; 1; (2017); p. 86 – 97;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Acetylferrocene

1271-55-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-55-2 ,Acetylferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Acetylferrocene, and cas is 1271-55-2, its synthesis route is as follows.

To a 100 mL round bottom reaction flask was added p-toluenesulfonyl hydrazide (1.5 eq)Methanol was gradually added until the p-toluenesulfonyl hydrazide was completely dissolved.Heated to 60oC,After a small amount of methanol was used to dissolve acetyl ferrocene (1 equivalent) prepared in the previous reaction,Was added dropwise to p-toluenesulfonyl hydrazide solution,Stirring to reflux to a large amount of solid precipitation.Suction filtered, washed with petroleum ether,Dry, getAcetylferrocene p-toluenesulfonyl hydrazone.Yield 81%.

1271-55-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-55-2 ,Acetylferrocene, other downstream synthetic routes, hurry up and to see

Reference:
Patent; Inner Mongolia University; Zhang Hao; Ling Li; Hu Jianfeng; Huo Yanhong; (11 pag.)CN107226829; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about Acetylferrocene

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

To a solution of 172 mg KOH (3.07 mmol) in 10 cm3 of EtOH/H2O (1:1) at r.t., 1 g of acetylferrocene(4.38 mmol) was added, followed by dropwise addition of 0.45 cm3 benzaldehyde (4.38 mmol). The thus prepared darkviolet solution was stirred at r.t. for 3 days. Then the reaction mixture was extracted with CH2Cl2(3 × 10 cm3). The collected organic layers were dried over Na2SO4 and filtered,and the resulting solution was evaporated under reduced pressure to afford the crude product. Isolated enone 9 was characterized and used in the subsequent reaction without further purification. Dark-red crystalline solid (1.28 g, yield:93%); m.p.: 112-118 C; 1H NMR (600 MHz, CDCl3):delta = 7.81 (d, J = 15.7 Hz, 1H), 7.68-7.63 (m, 2H), 7.45-7.39(m, 3H), 7.14 (d, J = 15.6 Hz, 1H), 4.92-4.91 (m, 2H),4.61-4.57 (m, 2H), 4.21 (s, 5H) ppm; 13C NMR (150 MHz,CDCl3):delta = 192.8, 140.8, 135.1, 130.1, 128.9, 122.9, 80.6,72.7, 70.1, 69.7, 69.7 ppm; IR (neat): = 1648 (s, C=O),1595 (m, C=C), 1456 (m, C-H), 1376 (m, C-H), 1280 (w,C-H), 1079 (m, C-H), 993 (w, C-H), 821 (m, C-H), 757(m, C-H), 687 (m, C-H), 544 (w, C-H), 499 (s, C-H), 480 (s, C-H) cm-1; HRMS (ESI): m/z found 317.0621, calcd forC19H17FeO+([M + H+]) 317.0629.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

Reference:
Article; Mravec, Bernard; Plevova, Kristina; ?ebesta, Radovan; Monatshefte fur Chemie; vol. 150; 2; (2019); p. 295 – 302;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1271-55-2

The chemical industry reduces the impact on the environment during synthesis,1271-55-2,Acetylferrocene,I believe this compound will play a more active role in future production and life.

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a solution of acetyl ferrocene (0.34 g, 2.5 mmol) and correspondingactive aldehyde (2.5 mmol) in dry ethanol (20 ml) takenin a beaker (100 ml), a catalytic quantity of potassium hydroxide(0.05 g, 1.25 mmol)was added and the reaction mixturewas heatedinside a microwave oven for 54e68 s (at 210W, i.e. ~30% microwavepower) [25]. After complete the reaction mixture was cooled in anice bath and the product thus formed were filtered, washed withethanol followed by washing with water till the washings wereneutral and recrystallized from distilled ethanol and chloroform(Scheme 1 and Table 1).

The chemical industry reduces the impact on the environment during synthesis,1271-55-2,Acetylferrocene,I believe this compound will play a more active role in future production and life.

Reference:
Article; Khan, Salman A.; Asiri, Abdullah M.; Al-Ghamdi, Najat Saeed M.; Zayed, Mohie E.M.; Sharma, Kamlesh; Parveen, Humaira; Journal of Molecular Structure; vol. 1139; (2017); p. 137 – 148;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-55-2

The chemical industry reduces the impact on the environment during synthesis,1271-55-2,Acetylferrocene,I believe this compound will play a more active role in future production and life.

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: To a solution of acetyl ferrocene (228 mg, 1mmol) in ethyl alcohol (15 ml) was added KOH (110 mg, 2 mmol) and stirred at room temperature for 15 min, then appropriate aromatic aldehyde (1 mmol) in ethyl alcohol (5 ml) was slowly added and the mixture was allowed to stirred at room temperature. After complete consumption of acetyl ferrocene (monitored by TLC, a red to purple colour solid was formed), 2-hydrazinobenzothiazole (165 mg, 1.0 mmol), KOH (110 mg, 2 mmol) and additional ethyl alcohol (5 ml) and was slowly added and the resulting mixture was refluxed for overnight. After completion of the reaction (monitored by TLC, an orange to red colour solid was formed), the reaction mixture was cooled, the solid formed was filtered, washed with cold ethanol-water mixture, water and air dried. The resulting solid was purified by column chromatography using n-hexane/ethyl acetate mixture (9:1 to 8:2) to obtain the ferrocene derivative.

The chemical industry reduces the impact on the environment during synthesis,1271-55-2,Acetylferrocene,I believe this compound will play a more active role in future production and life.

Reference:
Article; Kiran Kumar, Chakka; Trivedi, Rajiv; Giribabu, Lingamallu; Niveditha, Surukonti; Bhanuprakash, Kotamarthi; Sridhar, Balasubramanian; Journal of Organometallic Chemistry; vol. 780; (2015); p. 20 – 29;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1271-55-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of acetyl ferrocene 1a (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give yellow solid 2a in 86 % yield. mp 187-189 C. 1H NMR (500 MHz, DMSO) delta 10.00 (s,1H), 7.81 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 4.49 (s, 2H), 4.29 (s, 2H), 3.93 (s, 5H), 2.36 (s, 3H), 2.04 (s, 3H). 13C NMR (126 MHz, DMSO) d 155.1, 143.0, 136.4, 129.1, 127.6, 69.6, 68.9, 66.8, 20.9, 15.0. HRMS (ESI-TOF) m/z: [M]+ calcd. for C19H20FeN2O2S 396.0595; Found: 396.0594.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

Reference£º
Article; Ling, Li; Hu, Jianfeng; Zhang, Hao; Tetrahedron; vol. 75; 17; (2019); p. 2472 – 2481;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-55-2

1271-55-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-55-2 ,Acetylferrocene, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Acetylferrocene, cas is 1271-55-2 its synthesis route is as follows.

General procedure: To a stirred suspension of p-toluenesulfonyl hydrazide (1eq.) in water (12mL) and three drops of HCl 32%, the formyl or acetyl organometallic precursor (1eq.) was added. The resulting mixture was stirred for 18h at room temperature. The precipitate obtained was washed with water (2¡Á10mL) and dried under vacuum. The hydrazone derivatives were recrystallized from acetone/hexane (1:5) at -18C

1271-55-2, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-55-2 ,Acetylferrocene, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Concha, Camila; Quintana, Cristobal; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Lopez, Rodrigo; Romanos, Javier; Huentupil, Yosselin; Arancibia, Rodrigo; Polyhedron; vol. 131; (2017); p. 40 – 45;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1271-55-2

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

1271-55-2, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Acetylferrocene, cas is 1271-55-2,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Acetylferrocene, 1271-55-2

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-55-2

1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-55-2,Acetylferrocene,as a common compound, the synthetic route is as follows.

General procedure: A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of ferrocenylketone (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5-2 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give the pure products. In general, the yields were 68-86 %. Because of the relatively low activity of some ketones, their reactions at room temperature may be incomplete. They should be reacted in refluxing methanol. The reaction could be monitored by TLC., 1271-55-2

1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Ling, Li; Hu, Jianfeng; Huo, Yanhong; Zhang, Hao; Tetrahedron; vol. 73; 1; (2017); p. 86 – 97;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-55-2

With the rapid development of chemical substances, we look forward to future research findings about Acetylferrocene

Acetylferrocene, cas is 1271-55-2, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-55-2

General procedure: To a solution of acetyl ferrocene (228 mg, 1mmol) in ethyl alcohol (15 ml) was added KOH (110 mg, 2 mmol) and stirred at room temperature for 15 min, then appropriate aromatic aldehyde (1 mmol) in ethyl alcohol (5 ml) was slowly added and the mixture was allowed to stirred at room temperature. After complete consumption of acetyl ferrocene (monitored by TLC, a red to purple colour solid was formed), 2-hydrazinobenzothiazole (165 mg, 1.0 mmol), KOH (110 mg, 2 mmol) and additional ethyl alcohol (5 ml) and was slowly added and the resulting mixture was refluxed for overnight. After completion of the reaction (monitored by TLC, an orange to red colour solid was formed), the reaction mixture was cooled, the solid formed was filtered, washed with cold ethanol-water mixture, water and air dried. The resulting solid was purified by column chromatography using n-hexane/ethyl acetate mixture (9:1 to 8:2) to obtain the ferrocene derivative.

With the rapid development of chemical substances, we look forward to future research findings about Acetylferrocene

Reference£º
Article; Kiran Kumar, Chakka; Trivedi, Rajiv; Giribabu, Lingamallu; Niveditha, Surukonti; Bhanuprakash, Kotamarthi; Sridhar, Balasubramanian; Journal of Organometallic Chemistry; vol. 780; (2015); p. 20 – 29;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion