Analyzing the synthesis route of 1271-55-2

With the synthetic route has been constantly updated, we look forward to future research findings about Acetylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Acetylferrocene,1271-55-2,Molecular formula: C12H12FeO,mainly used in chemical industry, its synthesis route is as follows.,1271-55-2

General procedure: A mixture of 1.14 g (5 mmol) of acetylferrocene, 5 mmol of the corresponding aromatic aldehyde, 50 mL of ethanol, and 2.5 g (45 mmol) of potassium hydroxide was stirred for 12 h at room temperature. The mixture was poured onto ice, and the precipitate was filtered off and purified by silica gel column chromatography using methylene chloride (2, 4) or methylene chloride-hexane (19 : 1) (3) as eluent. 1-Ferrocenyl-3-(4-fluorophenyl)prop-2-en-1-one(2). Yield 85%,

With the synthetic route has been constantly updated, we look forward to future research findings about Acetylferrocene,belong iron-catalyst compound

Reference£º
Article; Antuf?eva; Zhulanov; Dmitriev; Mokrushin; Shklyaeva; Abashev; Russian Journal of General Chemistry; vol. 87; 3; (2017); p. 470 – 478; Zh. Obshch. Khim.; vol. 87; 3; (2017); p. 465 – 473,9;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1271-55-2

With the rapid development of chemical substances, we look forward to future research findings about Acetylferrocene

Acetylferrocene, cas is 1271-55-2, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-55-2

General procedure: To a magnetic stirred solution of acylferrocene (10 mmol) in methanol (30 mL) tosylhydrazine (10 mmol) was added. Then the mixture was stirred vigorously at 70 C. TLC analysis was performed until the spot of acylferrocene disappeared. Then the solution was cooled to room temperature, and N-tosylhydrazone precipitated. The precipitate was filtered and washed with petroleum ether (10 mL * 2) to get the pure product.

With the rapid development of chemical substances, we look forward to future research findings about Acetylferrocene

Reference£º
Article; Liu, Yueqiang; Ma, Xiaowei; Liu, Yan; Liu, Ping; Dai, Bin; Synthetic Communications; vol. 48; 8; (2018); p. 921 – 928;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1271-55-2

1271-55-2, As the paragraph descriping shows that 1271-55-2 is playing an increasingly important role.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A solution of pure TsNHNH2 (15 mmol) in methanol (30 mL) was stirred and heated to 60 C until the TsNHNH2 dissolved. The mixture was cooled to room temperature. Then a solution of acetyl ferrocene 1a (10 mmol) in methanol was dropped into the mixture slowly. After approximately 0.5 h, the crude products could be obtained as solid precipitate. The precipitate was washed with petroleum ether then removed in vacuo to give yellow solid 2a in 86 % yield. mp 187-189 C. 1H NMR (500 MHz, DMSO) delta 10.00 (s,1H), 7.81 (d, J = 7.9 Hz, 2H), 7.43 (d, J = 7.8 Hz, 2H), 4.49 (s, 2H), 4.29 (s, 2H), 3.93 (s, 5H), 2.36 (s, 3H), 2.04 (s, 3H). 13C NMR (126 MHz, DMSO) d 155.1, 143.0, 136.4, 129.1, 127.6, 69.6, 68.9, 66.8, 20.9, 15.0. HRMS (ESI-TOF) m/z: [M]+ calcd. for C19H20FeN2O2S 396.0595; Found: 396.0594.

1271-55-2, As the paragraph descriping shows that 1271-55-2 is playing an increasingly important role.

Reference£º
Article; Ling, Li; Hu, Jianfeng; Zhang, Hao; Tetrahedron; vol. 75; 17; (2019); p. 2472 – 2481;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-55-2

As the rapid development of chemical substances, we look forward to future research findings about 1271-55-2

Acetylferrocene, cas is 1271-55-2, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-55-2

General procedure: To a stirred suspension of p-toluenesulfonyl hydrazide (1eq.) in water (12mL) and three drops of HCl 32%, the formyl or acetyl organometallic precursor (1eq.) was added. The resulting mixture was stirred for 18h at room temperature. The precipitate obtained was washed with water (2¡Á10mL) and dried under vacuum. The hydrazone derivatives were recrystallized from acetone/hexane (1:5) at -18C

As the rapid development of chemical substances, we look forward to future research findings about 1271-55-2

Reference£º
Article; Concha, Camila; Quintana, Cristobal; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Lopez, Rodrigo; Romanos, Javier; Huentupil, Yosselin; Arancibia, Rodrigo; Polyhedron; vol. 131; (2017); p. 40 – 45;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-55-2

1271-55-2, As the paragraph descriping shows that 1271-55-2 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-55-2,Acetylferrocene,as a common compound, the synthetic route is as follows.

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

1271-55-2, As the paragraph descriping shows that 1271-55-2 is playing an increasingly important role.

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about Acetylferrocene

With the rapid development of chemical substances, we look forward to future research findings about 1271-55-2

Acetylferrocene, cas is 1271-55-2, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-55-2

To a solution of 172 mg KOH (3.07 mmol) in 10 cm3 of EtOH/H2O (1:1) at r.t., 1 g of acetylferrocene(4.38 mmol) was added, followed by dropwise addition of 0.45 cm3 benzaldehyde (4.38 mmol). The thus prepared darkviolet solution was stirred at r.t. for 3 days. Then the reaction mixture was extracted with CH2Cl2(3 ¡Á 10 cm3). The collected organic layers were dried over Na2SO4 and filtered,and the resulting solution was evaporated under reduced pressure to afford the crude product. Isolated enone 9 was characterized and used in the subsequent reaction without further purification. Dark-red crystalline solid (1.28 g, yield:93%); m.p.: 112-118 C; 1H NMR (600 MHz, CDCl3):delta = 7.81 (d, J = 15.7 Hz, 1H), 7.68-7.63 (m, 2H), 7.45-7.39(m, 3H), 7.14 (d, J = 15.6 Hz, 1H), 4.92-4.91 (m, 2H),4.61-4.57 (m, 2H), 4.21 (s, 5H) ppm; 13C NMR (150 MHz,CDCl3):delta = 192.8, 140.8, 135.1, 130.1, 128.9, 122.9, 80.6,72.7, 70.1, 69.7, 69.7 ppm; IR (neat): = 1648 (s, C=O),1595 (m, C=C), 1456 (m, C-H), 1376 (m, C-H), 1280 (w,C-H), 1079 (m, C-H), 993 (w, C-H), 821 (m, C-H), 757(m, C-H), 687 (m, C-H), 544 (w, C-H), 499 (s, C-H), 480 (s, C-H) cm-1; HRMS (ESI): m/z found 317.0621, calcd forC19H17FeO+([M + H+]) 317.0629.

With the rapid development of chemical substances, we look forward to future research findings about 1271-55-2

Reference£º
Article; Mravec, Bernard; Plevova, Kristina; ?ebesta, Radovan; Monatshefte fur Chemie; vol. 150; 2; (2019); p. 295 – 302;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-55-2

1271-55-2, 1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various fields.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A mixture of 1.14 g (5 mmol) of acetylferrocene, 5 mmol of the corresponding aromatic aldehyde, 50 mL of ethanol, and 2.5 g (45 mmol) of potassium hydroxide was stirred for 12 h at room temperature. The mixture was poured onto ice, and the precipitate was filtered off and purified by silica gel column chromatography using methylene chloride (2, 4) or methylene chloride-hexane (19 : 1) (3) as eluent. 1-Ferrocenyl-3-(4-fluorophenyl)prop-2-en-1-one(2). Yield 85%,

1271-55-2, 1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Antuf?eva; Zhulanov; Dmitriev; Mokrushin; Shklyaeva; Abashev; Russian Journal of General Chemistry; vol. 87; 3; (2017); p. 470 – 478; Zh. Obshch. Khim.; vol. 87; 3; (2017); p. 465 – 473,9;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1271-55-2

1271-55-2, The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a stirred suspension of p-toluenesulfonyl hydrazide (1eq.) in water (12mL) and three drops of HCl 32%, the formyl or acetyl organometallic precursor (1eq.) was added. The resulting mixture was stirred for 18h at room temperature. The precipitate obtained was washed with water (2¡Á10mL) and dried under vacuum. The hydrazone derivatives were recrystallized from acetone/hexane (1:5) at -18C

1271-55-2, The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Concha, Camila; Quintana, Cristobal; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Lopez, Rodrigo; Romanos, Javier; Huentupil, Yosselin; Arancibia, Rodrigo; Polyhedron; vol. 131; (2017); p. 40 – 45;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-55-2

1271-55-2, The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-55-2,Acetylferrocene,as a common compound, the synthetic route is as follows.

To a 100 mL round bottom reaction flask was added p-toluenesulfonyl hydrazide (1.5 eq)Methanol was gradually added until the p-toluenesulfonyl hydrazide was completely dissolved.Heated to 60oC,After a small amount of methanol was used to dissolve acetyl ferrocene (1 equivalent) prepared in the previous reaction,Was added dropwise to p-toluenesulfonyl hydrazide solution,Stirring to reflux to a large amount of solid precipitation.Suction filtered, washed with petroleum ether,Dry, getAcetylferrocene p-toluenesulfonyl hydrazone.Yield 81%.

1271-55-2, The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Inner Mongolia University; Zhang Hao; Ling Li; Hu Jianfeng; Huo Yanhong; (11 pag.)CN107226829; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-55-2

1271-55-2, 1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a magnetic stirred solution of acylferrocene (10 mmol) in methanol (30 mL) tosylhydrazine (10 mmol) was added. Then the mixture was stirred vigorously at 70 C. TLC analysis was performed until the spot of acylferrocene disappeared. Then the solution was cooled to room temperature, and N-tosylhydrazone precipitated. The precipitate was filtered and washed with petroleum ether (10 mL * 2) to get the pure product.

1271-55-2, 1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Liu, Yueqiang; Ma, Xiaowei; Liu, Yan; Liu, Ping; Dai, Bin; Synthetic Communications; vol. 48; 8; (2018); p. 921 – 928;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion