New learning discoveries about 1273-82-1

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-82-1

Triphosgene (1.61 g, 5,44 mmol) and aminoferrocen (1.09 g, 5.44 mmol) were added to toluene (98 mL) and purged with argon. The mixture was heated up to 120 C and kept at this temperature until all starting materials were dissolved (~30 min). The solution obtained was cooled down to 22 C and 4-(hydroxymethyl)-2-methylphenylboronic acid pinacol ester (1.35 g, 5.44 mmol) dissolved in CH2Cl2 (132 mL) was added dropwise. The solution was left stirring at 22 C for 44 h. Then, the solvent was removed in vacuum (10 mbar) and the product was purified by column chromatography on silica gel using hexane / EtOAc (10/2, v/v) as eluent. Yield 0.83 g (32 %). Rf= 0.33 (silica, eluent – CH2Cl2 / EtOAc, 7/2, v/v). 1H NMR (200 MHz, acetone-d6), delta in ppm: 7.72 (d, 1 H), 7.21 (m, 2H), 5.12 (s, 2H), 4.56 (s, 2H), 4.11 (s, 5H), 3.93 (s, 2H), 2.52 (t, 3H),1.34 (s, 12H). 13C NMR (100.55 MHz, acetone-d6), delta in ppm: 145.8, 141.0, 137.0, 129.7, 124.7, 84.3, 69.8, 66.5, 64.7, 61.1, 25.3, 22.5. FAB MS: calculated for C25H30BFeNO4 475.2, found 475.2 m/z. C, H, N analysis: calculated for C25H30BFeNO4 – C 63.2 %; H 6.4 %; N 3.0 %; found – C 63.3 %; H 6.6 %; N2.9%.

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Patent; Ruprecht-Karls-Universitaet Heidelberg; EP2497775; (2012); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-82-1

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

1273-82-1, General procedure: Ferrocenylamine (1 eq.) and 5-bromo-4-nitro-2-furaldehyde (4-NO2) (1 eq.) were dissolved in dry toluene (15 mL) and refluxed for 6 h under a nitrogen atmosphere. After this time, the solvent wasremoved under vacuum. The solid obtained contains a mixture of imine (1a) and amine (1b) (by TLC and 1H NMR). These complexes were separated by column chromatography on silica gel usingCH2Cl2 as the eluent. The first (red) band contained complex 1b,and the second (purple) band contained complex 1a. Finally, bothsolids obtained after solvent evaporation were purified by crystallizationfrom CH2Cl2/hexane (1:5) at 18 C.

With the rapid development of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Article; Toro, Patricia M.; Acuna, Alejandra; Mallea, Mario; Lapier, Michel; Moncada-Basualto, Mauricio; Cisterna, Jonathan; Brito, Ivan; Klahn, Hugo; Journal of Organometallic Chemistry; vol. 901; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Aminoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1273-82-1,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Aminoferrocene, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

The reaction step and the conditions of the step (2) are the same as those of the above step (1)The difference is that,4′-bromo-N, N-diphenylbiphenyl-4-amine was increased to 7.90 g (19.7 mmol)And purified by column chromatography,Need to be sublimated twice,To obtain a red compound Fc02 solid (yield 40%). A mixture of 300 mg (1.5 mmol) of the amine ferrocene obtained in Preparation Example 1, 1.8 g (4.5 mmol) of 4′-bromo-N, N-diphenylbiphenyl-4-amine (4′-bromo- -diphenylbiphenyl-4-amine),17 mg (0.075 mmol) of palladium acetate [Pd (OAc) 2]0.1 mL of a 10 wt% tributylphosphine n-hexane solution and 1.13 g (11.8 mmol) of sodium tert-butoxide(NaOtBu)And with 6 mL of toluene as solvent,After reacting at 130 C for 72 hours,The palladium catalyst was first removed by filtration through diatomaceous earth and silica gel,And rinsed with ethyl acetate to remove the solvent,And finally purified by column chromatography [4: 1 to 3: 2 (v / v) n-hexane and ethyl acetate gradient stripping system]To obtain the compound DPABPAFc (yield 50%The structure is shown in Reaction Scheme III).

With the complex challenges of chemical substances, we look forward to future research findings about 1273-82-1,belong iron-catalyst compound

Reference£º
Patent; Zheng, Jianhong; Lai, Zhenchang; Zhang, Yuwei; Liao, Chunyi; Huang, Minjie; (31 pag.)CN106317129; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-82-1

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Aminoferrocene,1273-82-1,Molecular formula: C10H11FeN,mainly used in chemical industry, its synthesis route is as follows.,1273-82-1

General procedure: 1a was synthesized by modifying the reported procedure [44]. Catalytic amount of p-toluene sulfonic acid (20mg, 0.10mmol) was added to a mixture of pyrrole-2-carbaldehye (380mg, 4.0mmol) and 1-amino-2-methoxybenzene (490mg, 4.0mmol) in methanol (10mL) under stirring condition in nitrogen atmosphere. The resulting mixture was heated to reflux for 20h, and then cooled to room temperature. After removal of volatiles under reduced pressure, the residue was mixed with THF and filtered through a pad of celite. The resulting solution was concentrated to give a brown solid, which was further purified by re-dissolved in THF/ether (1:4). The solution was kept at -18C for overnight, and brown crystalline solid was collected by filtration. The solid was washed with ether and further dried under vacuum to obtain 1a. Yield 270mg (68%). m.p. 235-236C. 1H NMR (400MHz, CDCl3) delta 10.07 (s, 1H, NH), 8.30 (s, 1H, CH=N), 7.20 (dt, J=7.6, 1.6Hz, 1H, Ar-H), 7.05 (d, J=1.6Hz, 1H, Ar-H), 7.01 (d, J=7.6Hz, 1H, Ar-H), 6.98 (d, J=7.6Hz, 1H, Ar-H), 6.88 (d, J=1.2Hz, 1H, Py-H), 6.70 (dd, J=1.2, 3.6Hz, 1H, Py-H), 6.30 (d, J=3.6Hz, 1H, Py-H), 3.88 (s, 3H, CH3). 13C NMR (100MHz, CDCl3) delta 152.52, 150.71, 141.82, 130.95, 126.63, 123.32, 121.36, 120.74, 116.69, 111.42, 110.47, 55.84. MS (ESI) m/z: 200.5. Anal. Calcd for C12H12N2O: C 71.98, H 6.04, N 13.99. Found: C 71.96, H 6.30, N 13.83.

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

Reference£º
Article; Zhuo, Ji-Bin; Ma, Zai-He; Lin, Cai-Xia; Xie, Li-Li; Bai, Sha; Yuan, Yao-Feng; Journal of Molecular Structure; vol. 1085; (2015); p. 13 – 20;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Aminoferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO337,mainly used in chemical industry, its synthesis route is as follows.,1273-82-1

General procedure: Organometallic sulfonamides were prepared following a modification of the procedure described by Alberto and co-workers [41]. An equimolar amount of pyridine was added at room temperature to a solution containing 50mg of P2 or P3 in 7.0mL of anhydrous CH2Cl2. After 15min, the corresponding sulfonyl chloride derivative was added, and the reaction mixture was heated under reflux for 24h. The resulting solution was dried under vacuum. The crude product was purified using silica gel liquid chromatography and a mixture of CH2Cl2/hexane (4:1) as the eluent. All compounds were recrystallized from an acetone/hexane (1:5) mixture by slow evaporation.

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

Reference£º
Article; Quintana, Cristobal; Silva, Gisella; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Novoa, Nestor; Arancibia, Rodrigo; Polyhedron; vol. 134; (2017); p. 166 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

1273-82-1, Example 1 Preparation of N,N-Dimethylaminoferrocene (11)19,20 A solution of aminoferrocene (1.07 g, 5.32 mmol) in acetic acid (15 mL) under argon was treated with paraformaldehyde (1.59 g, 53.2 mmol) and NaBH3CN (1.67 g, 26.6 mmol) and stirred at room temperature for 16 h. The reaction mixture was brought to pH 12 by addition of 6 M aqueous NaOH solution, and extracted with hexanes (3*20 mL). The combined organic extract was washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated to approx. 5% of its original volume under reduced pressure. The solution was filtered through basic alumina (20 mL) with hexanes, concentrated back to its pre-filtration volume and left to crystallize in a freezer to give N,N-dimethylaminoferrocene (11) (1.11 g, 91%) as orange flakes; mp 69-70 C. (hexanes); IR (KBr) vmax 3106, 2981, 2952, 2857, 2827, 2782, 1508 cm-1, 1H NMR (300 MHz, CDCl3) 4.25 (s, 5H), 3.93 (s, 2H), 3.78 (s, 2H), 2.59 (s, 6H); 13C NMR (75.5 MHz, acetone-d6) 115.8, 66.5, 63.0, 54.6, 41.5; EIMS [m/z(%)] 229 (M+, 100), 186 (18), 121 (17); HRMS (EI) calcd for C12H16N56Fe: 229.0554. found 229.0553. Anal. Calcd for C12H16N56Fe: C, 62.91; H, 6.60. Found: C, 62.95; H, 6.60.

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Reference£º
Patent; BROCK UNIVERSITY; US2010/137588; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

1273-82-1, General procedure: The organometallic compounds derived from 5-nitrothiophene were prepared following the same procedure as of their 5-nitrofurane analogues [14]. Equimolar amounts of the amino compound and 5-nitro-2-thiophenecarboxaldehyde were dissolved in anhydrous benzene (20mL) and refluxed for 1h under a nitrogen atmosphere. After, the solvent was removed under vacuum and the colored solids obtained were purified by crystallization from CH2Cl2/hexane (1:5) at -18C.

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Reference£º
Article; Arancibia, Rodrigo; Klahn, A. Hugo; Buono-Core, Gonzalo E.; Contreras, Daniel; Barriga, German; Olea-Azar, Claudio; Lapier, Michel; Maya, Juan D.; Ibanez, Andres; Garland, Maria Teresa; Journal of Organometallic Chemistry; vol. 743; (2013); p. 49 – 54;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-82-1

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

2) Under the protection of nitrogen, weighing 10 mmol […] [Ph2P (CH2OH)2]+Cl-And 5 mmol amino ferrocene in 100 ml Schlenk bottle, add 20 ml anhydrous methanol stirring, then add 10 mmol triethylamine, the reaction at room temperature, 6 h after sediment generated a large amount of orange, sand core for funnel drying to obtain FcN [CH2P (Ph)2]2Product 2.1 g, yield about 71%;

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Guangxi Normal University; Wang Xiujian; Gui Liucheng; Xie Tingting; Meng Yanfei; Ma Mengxia; Ni Qingling; (12 pag.)CN109796504; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-82-1

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

General procedure: Ferrocenylamine (1 eq.) and 5-bromo-4-nitro-2-furaldehyde (4-NO2) (1 eq.) were dissolved in dry toluene (15 mL) and refluxed for 6 h under a nitrogen atmosphere. After this time, the solvent wasremoved under vacuum. The solid obtained contains a mixture of imine (1a) and amine (1b) (by TLC and 1H NMR). These complexes were separated by column chromatography on silica gel usingCH2Cl2 as the eluent. The first (red) band contained complex 1b,and the second (purple) band contained complex 1a. Finally, bothsolids obtained after solvent evaporation were purified by crystallizationfrom CH2Cl2/hexane (1:5) at 18 C.

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Toro, Patricia M.; Acuna, Alejandra; Mallea, Mario; Lapier, Michel; Moncada-Basualto, Mauricio; Cisterna, Jonathan; Brito, Ivan; Klahn, Hugo; Journal of Organometallic Chemistry; vol. 901; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

2) Under the protection of nitrogen, weighing 10 mmol […] [Ph2P (CH2OH)2]+Cl-And 5 mmol amino ferrocene in 100 ml Schlenk bottle, add 20 ml anhydrous methanol stirring, then add 10 mmol triethylamine, the reaction at room temperature, 6 h after sediment generated a large amount of orange, sand core for funnel drying to obtain FcN [CH2P (Ph)2]2Product 2.1 g, yield about 71%;, 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Reference£º
Patent; Guangxi Normal University; Wang Xiujian; Gui Liucheng; Xie Tingting; Meng Yanfei; Ma Mengxia; Ni Qingling; (12 pag.)CN109796504; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion