Analyzing the synthesis route of 1273-86-5

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

Acetophenone (120mg, 1mmol), cat.1 (5.4mg, 0.01mmol, 1.0mol%), cesium carbonate (33mg, 0.1mmol,0.1equiv.), Ferrocene methanol (238mg, 1.1mmol) and tert-amyl alcohol (1ml) were sequentially added to 5mL round bottom flask.After the reaction mixture was refluxed in air for six hours, cooled to room temperature. The solvent is removed by rotary evaporation, then purified by column chromatography (developingOpen solvent: petroleum ether / ethyl acetate) to give pure target compound, yield: 82%

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Nanjing University of Science and Technology; Ma, Juan; Li, Lei; Li, Feng; (17 pag.)CN105439787; (2016); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-86-5

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Cyanuric chloride (TCT)(0.184g, 1mmol) was added intoa 50mL one-necked round-bottom flask with 10mL dry THF.The mixture was stirred in a cold bath and ferrocenemethanol(0.864g, 4mmol) in 10mL dry THF was slowly added tothe reaction system using a syringe. The mixture was stirred in the cold bath for 30min. Subsequently, DMAP (0.366g,3mmol) in 10mL dry THF was also slowly added to the reactionsystem using a syringe. The mixture was stirred in thecold bath for an additional 30min. Then, the temperature naturally rose to room temperature and was stirred for 8h.This time, the reaction system was refluxed. After the completion of the reaction indicated by simple TLC analysis, the solvent was evaporated under the reduced pressure, and theresidual was directly purified by column chromatography(EtOAc/Petroleum ether: 5:12:1) to obtain the target compound 1. 0.506g, light yellow solid, yield, 70%, Mp.:199-201 oC, 1H NMR(400MHz, CDCl3) (ppm): 4.73(s, 6H,32H of C5H4), 4.38(s, 6H, 32H of C5H4), 4.15(s, 15H,3C5H5), 4.10(s, 6H, 3CH2); 13C NMR(100MHz, CDCl3) (ppm): 148.7(3C=N), 81.5(6C), 70.4(6C), 68.7(15C),68.5(3C), 42.1(3CH2); ESI-MS(m/e, 100%) 746([M+23]+,100); Anal.calcd. for C36H33N3O3Fe3: N, 5.81; C, 59.75; H,4.56; Found: N, 5.75; C, 59.57 ; H, 4.64

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Yong, Jianping; Wu, Xiaoyuan; Liao, Jianzhen; Lu, Canzhong; Liu, Xiaolong; Medicinal Chemistry; vol. 12; 5; (2016); p. 426 – 431;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

Ferrocene methanol (ferrocenyl methanol, 3mmol), triphenylphosphine (PPh3,1.18g, 4.5mmol), all-trans retinoic acid (ATRA, 3mmol), was dissolved in 20mL of tetrahydrofuran (THF), stir to dissolve, then under nitrogen, was added diisopropyl azodicarboxylate (DIAD, 0.8g, 4.5mmol) under conditions of 0 C . The reaction Thin chromatography (TLC) monitoring process, after the completion of the reaction continued at room temperature for 2 hours. 30 deg C and concentrated in vacuo by rotary evaporation to a thick oil, the product was extracted using silica gel column chromatography (ethyl acetate / petroleum ether = 2: 8 volume ratio) to give the product as the first ferrocene carboxylic acid (FCRA ), 83% yield

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Patent; Jilin University; SUN, HONGCHEN; SUN, BIN; ZHU, SHOUJUN; WANG, DANDAN; ZHANG, KAI; LI, XING; WANG, LU; WANG, YIBO; TANG, QI; XIN, YING; YANG, BAI; (13 pag.)CN106265600; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: To a mixture of 1.0mmol of ferrocene alcohol and 1.0mmol of the corresponding nitroimidazole in 1.0ml of methylene dichloride, 0.18ml of 45% aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5min then diethyl ether (15ml), the same amount of cold water, and 5-10mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture, the organic solution was separated, washed with cold water (3¡Á15ml), the solvents were removed in vacuo, and the residue was dried over CaCl2 in a desiccator.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Snegur, Lubov V.; Lyapunova, Maria V.; Verina, Daria D.; Kachala, Vadim V.; Korlyukov, Alexander A.; Ilyin, Mikhail M.; Davankov, Vadim A.; Ostrovskaya, Larissa A.; Bluchterova, Natalia V.; Fomina, Margarita M.; Malkov, Victor S.; Nevskaya, Kseniya V.; Pershina, Alexandra G.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 871; (2018); p. 10 – 20;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of K2CO3 (1 mmol) and the catalyst (52 mg, ?3 mol% of Pd2+) in toluene (5 ml) was prepared in a two necked flask. The flask was evacuated and refilled with pure oxygen. To this solution, the alcohol (1 mmol, in 1 ml toluene) was injected and the resulting mixture was stirred at 80 C under an oxygen atmosphere. After completion of reaction, the reaction mixture was filtered off and the catalyst rinsed twice with CH2Cl2 (5 ml). The excess of solvent was removed under reduced pressure to give the corresponding carbonyl compounds.

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Alizadeh; Khodaei; Kordestania; Beygzadeh; Journal of Molecular Catalysis A: Chemical; vol. 372; (2013); p. 167 – 174;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-86-5

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: A mixture of aryl alcohol (1 mmol) and [FemDMMerA]Y (100 mg) in solvent(5 mL) was refluxed in oil bath. After completion of the reaction as monitored byTLC, the reaction mixture was filtered to remove insoluble SILP catalyst.Evaporation of solvent in vacuuo followed by column chromatography over silicagel using petroleum ether/ethyl acetate (95:5 v/v) afforded pure aldehydes.

1273-86-5, The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kurane, Rajanikant; Bansode, Prakash; Khanapure, Sharanabasappa; Salunkhe, Rajashri; Rashinkar, Gajanan; Research on Chemical Intermediates; vol. 42; 12; (2016); p. 7807 – 7821;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about Ferrocenemethanol

With the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Ferrocenemethanol, cas is 1273-86-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1273-86-5

General procedure: ferrocenemethanol was added to the substrates 1a-l in a round bottomflask and the mixture was heated under stirring at 50-90C (as reported in Table 1), the reaction was monitored byTLC and capillary electrophoresis, after completion of reaction. The reactionmixture was flash chromatographed by silica gel column to give the purecompounds 3a-l as reported in Table 1. Typical eluent: hexane/ethyl acetate= 7/3.

With the rapid development of chemical substances, we look forward to future research findings about 1273-86-5

Reference£º
Article; Shisodia, Suresh Udhavrao; Auricchio, Sergio; Citterio, Attilio; Grassi, Marco; Sebastiano, Roberto; Tetrahedron Letters; vol. 55; 4; (2014); p. 869 – 872;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-86-5

1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.

1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion