Share a compound : 1287-16-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3-ethyl-4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.13 mmol,Then 5 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,380W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,A crude product of 3-ethyl-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield was 83%

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

Reference:
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1287-16-7

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

Name is Ferrocenylacetic acid, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1287-16-7, its synthesis route is as follows.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

Reference:
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1287-16-7

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

1) 1.1 mmol of ferrocenyl acetic acid and 1 mmol of 3- (2,4-dichlorophenoxymethylene) -4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.12 mmol,Then 5 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,360W under irradiation once every 30s,Irradiation duration of 4min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,3- (2,4-dichlorophenoxymethylene) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazine Azole crude product,The crude product was recrystallized using 80% aqueous ethanol,That is, a brown solid,The yield is 81%

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

Reference:
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1287-16-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Example 1 – Preparation of ferrocene modified phospholipid (3)[0064] Ferrocene modified phospholipid (FC-DSP) was prepared in the following manner: triethylamine (0.077 mmol, 0.01 ml_, 1.4 eq) and N,N-dicyclohexylcarbodiimide (0.077 mmol, 15.9 mg, 1.4 eq) were added to a solution that contained 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (0.055 mmol, 35 mg, 1.0 eq) and ferroceneacetic acid (0.077 mmol, 18.8 mg, 1.4 eq) in anhydrous DCM (1.5 ml_). The reaction was stirred overnight, until N MR indicated conversion to the coupling was completed. The solution was concentrated under vacuum and then was purified on iatrobeads gel chromatography ( 10% MeOH : DCM). A dark-brown oil (29.4 mg, 0.0341 mmol) was obtained (62% yield). H N MR (300 MHz, CDCI3) delta 7.04 (br, 1 H), 5.23 (br, 1 H), 4.37 (br, 1 H), 4.22 (br, 2H), 4.12 (br, 5H), 3.94 (br, 2H), 3.49 (br, 4H), 3.28 (br, 2H), 3.05 (br, 4H), 2.28 (br, 4H), 1.58 (br, 4H), 1.25 (br, 40H), 0.87 (t, J = 6.5 Hz, 6H).3P NMR (122 MHz, CDCI3) delta 0.15 (s).3C N MR (75 MHz, CDCI3) delta 173.60 (s), 173.21 (s), 70.56 (s), 69.26 (s), 68.92 (s), 68.14 (s), 62.82 (s), 45.87 (s), 34.44 (s), 34.25 (s), 32.05 (s), 29.80 (s), 29.65 (s), 29.49 (s), 29.29 (s), 25.02 (s), 22.81 (s), 14.24 (s), 8.73 (s). HRMS (ESI): Calc. for C45H76FeN09P (M+H)+: 862.4680; found : 862.4624.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

Reference:
Patent; THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY; TRANSFERT PLUS SOCIETE EN COMMANDITE; MAUZEROLL, Janine; NOYHOUZER, Tomer Aharon; SNOWDEN, Michael Edward; DAUPHIN DUCHARME, Philippe; MAZURKIEWICZ, Stephani; L’HOMME, Chloe; DESJARDINS, Samuel; CANESI, Sylvain; (84 pag.)WO2016/115626; (2016); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1287-16-7

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenylacetic acid, and cas is 1287-16-7, its synthesis route is as follows.

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3-methyl-4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then, 0.15 mmol of p-toluenesulfonic acid,7 mL of DMF was further added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,360W under irradiation once every 30s,Irradiation duration of 5min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,A crude product of 3-methyl-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield was 86%

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

Reference:
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenylacetic acid

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

Reference:
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1287-16-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1287-16-7, Ferrocenylacetic acid

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1287-16-7, Ferrocenylacetic acid

Reference:
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1287-16-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

1) Weigh 1.2mmol ferrocenyl acetic acid and3-H-4-amino-5-mercapto-1,2,4-triazole 1 mmol,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.13 mmol,Then 6 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,350W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,The crude product of 3-hydro-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield is 82%

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

Reference:
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Introduction of a new synthetic route about 1287-16-7

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenylacetic acid, cas is 1287-16-7 its synthesis route is as follows.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

Reference:
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of Ferrocenylacetic acid

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

Reference:
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion