The important role of 1293-65-8

With the complex challenges of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

Name is 1,1′-Dibromoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Preparation of i-phenylchlorophosphine-i ‘-bromoferrocene (X1 )14.5 ml (23.2 mmol) of n-BuLi (1.6 M in hexane) are added dropwise to a solution of 8 g (23.2 mmol) of 1 ,1 ‘-dibromoferrocene in 30 ml of THF at a temperature of < -30 C. The mixture is stirred for a further 30 minutes at this temperature. It is then cooled to -78C and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60C. After stirring the mixture at -78C for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. This gives a suspension of the monochlorophosphine X1.; Preparation of i-dicyclohexylphosphino-i '-bromoferrocene of the formula (A2)120 ml (0.3 mol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 103 g (0.3 mol) of 1 ,1 '-dibromoferrocene in 300 ml of THF at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. It is then cooled to -50C and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are added dropwise at such a rate that the temperature does not exceed -45C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After addition of 150 ml of water, the reaction mixture is shaken with hexane. The organic phases are dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product A2 is obtained in a yield of 84% (yellow solid). 1H NMR (300 MHz, C6D6): delta 1.20-2.11 (m, 22H), 3.97 (m, 2H), 4.23 (m, 2H), 4.26 (m, 2H), 4.41 (m, 2H). 31P NMR (121.5 MHz, C6D6): delta -8.3 (s).; Example B17: Preparation of the compound (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen- i-yllcyclohexylphosphino-i '-bis-beta.S-d^trifluoromethylJphenyllphosphinoferrocene (B17):4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours to give a suspension of 1-bromo-1 '-lithioferrocene X5.In a second reaction vessel, 7.7 ml (10 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of TBME at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0 and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 1.51 ml (10 mmol) of dichlorocyclohexyl- phosphine are added. Further stirring at -78C for 30 minutes and, after removal of cooling, at room temperature for another one hour gives a suspension of the chlorophosphine X4 which is subsequently added at a temperature of <-10C to the suspension of 1-bromo-1 '-lithio- ferrocene X5. The cooling is then removed and the mixture is stirred at room temperature for a further 1.5 hours. After renewed cooling to <-50C, 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. After the addition, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes. It is then cooled to -20C and 4.63 g (10 mmol) of bis[3,5-di(trifluoromethyl)phenyl]chlorophosphine are added. The cooling is subsequently removed and the mixture is stirred at room temperature for another 1.5 hours. The reaction mixture is admixed with 1 N NaOH and extracted. The organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is subsequently heated at 150C for one hour. Chromatographic purification (silica gel 60; eluent = hexane/ethyl acetate 8:1 ) gives the compound B17 as a yellow solid (yield: 66%). 1H NMR (300 MHz, C6D6): delta 1.25 (d, 3H, J = 6.7 Hz), 1.00-2.29 (m, 1 1 H), 2.20 (s, 6H), 3.78 (m, 1 H), 4.02 (m, 1 H), 4.04 (s, 5H), 4.09 (m, 1 H), 4.14 (m, 1 H), 4.17 (m, 1 H), 4.21 (m, 1 H), 4.40 (m, 2H), 4.60 (m, 1 H), 7.80 (d, 2H, J = 6.8 Hz), 8.00 (d, 4H, J = 6.0 Hz). 31P NMR (121.5 MHz, C6D6): delta -27.1 (s); -14.1 (s).; Example B18: Reaction schemeX24 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 ‘-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. 2.21 ml (10 mmol) of dicyclohexylphosphine chloride are then added dropwise at such a rate that the temperature does not exceed -20C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. It is cooled back down to 30C and 4.4 ml (11 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. The mixture is subsequently stirred at -10C for 30 minutes. The reaction mixture is the... With the complex challenges of chemical substances, we look forward to future research findings about 1,1'-Dibromoferrocene Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1293-65-8

With the complex challenges of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Example L; Preparation of (RC,SFC,SP)-1 -[2-(1 -dimethylaminoethyl)ferrocen-1 -yl]phenylphosphino-1 ‘-bromoferrocenes of the formula (A1) [Ph = phenyl; Me = methyl]; a) Preparation of i -phenylchlorophosphine-i ‘-bromoferrocene (X1); To a solution of 8 g (23.2 mmol) of 1 ,1’-dibromoferrocene in 30 ml of tetrahydrofuran (THF) are added dropwise, at a temperature of < -300C, 14.5 ml (23.2 mmol) of n-butyllithium (n-BuLi) (1.6 M in hexane). The mixture is stirred further at this temperature for 30 minutes. It is then cooled to -78C, and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at a sufficiently slow rate that the temperature does not rise above -600C. After stirring at -78C for a further 10 minutes, the temperature is allowed to rise to room temperature and stirring is continued for another hour. This affords a suspension of the monochlorophosphine X1. With the complex challenges of chemical substances, we look forward to future research findings about 1,1'-Dibromoferrocene Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2008/77917; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

1,1′-Dibromoferrocene (5.1 g,14.8 mmol) was dissolved in 50 mL of thf and cooled to 100 C. nBuLi (6 mL, 14.8 mmol) was slowly added and the reaction mixture left to stir at this temperature for 45 min. Dry [ZnCl2*2thf] (4.2 g, 15.0 mmol) was added in a single portion and the resulting preparation was kept at 0 C for 30 min. Afterward, 2,5-dibromothiophene (0.83 mL, 6.45 mmol) and [Pd(CH2CMe2PtBu2)(mu-Cl)]2 (0.025 g, 36.4 mmol) were added to the solution. The reaction mixture was heated to 55 C and stirred for 36 h at this temperature. After cooling to ambient temperature, the crude product was adsorbed on alumina and purified by column chromatography on alumina, using an n-hexane/toluene mixture of ratio 4:1 (v:v) as eluent. Yield 1.60 g (43%), dark orange solid. Anal.Calcd. for C24H18Br2Fe2S (609.98): C:47.24%; H:2.98%; Found:C:47.16%; H: 2.99%. Mp: 220 C.

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

Reference£º
Article; Van Der Westhuizen, Belinda; Matthaeus Speck; Korb, Marcus; Bezuidenhout, Daniela I.; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 772; (2014); p. 18 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1293-65-8

1293-65-8 1,1′-Dibromoferrocene 72376387, airon-catalyst compound, is more and more widely used in various fields.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1293-65-8

1,10-Dibromoferrocene [23] (300 mg, 0.87 mmol) was dried for3hat 2*102 mbar in a Schlenk flask. Afterwards, itwas dissolved indry diethylether (2 ml) forming a clear yellow solution. In a separateSchlenk flask diethylether (4 ml) was cooled to 78 C and tertbutyllithiumin n-hexane (2.3 ml, 3.66 mmol,1.6M) was added. Thedissolved 1,10dibromoferrocene was added dropwise to the tertbutyllithiumsolution over a period of 5 min. The resulting mixturewas stirred at 78 C for 1 h. In an additional Schlenk flask NFSI(1.15 g, 3.66 mmol), which had been dried for 3 h in vacuo, wasdissolved in tetrahydrofurane (6 ml). The NFSI solutionwas added tothe reaction mixture within 2 min. Directly after the addition thesolution was quenched with NaBH4 and 20 ml 0.1 M Ca(OH)2.Pentane (50 ml)was added and the two-phase systemwas stirred for1 h. The organic phase was separated and washed 3 times withwater. All solvents were carefully removed in vacuo. The crudeproduct was filtered through alumina (Activity III, diameter 2 cm,length 25 cm) with pentane as mobile phase. After evaporation ofthe solvent, the crude product was purified by HPLC (CH3CN/H2O(70:30); isocratic). The HPLC fractions were extracted with pentane(4 20 ml). The organic phase was dried with MgSO4 and carefullyevaporated in vacuo (the product is volatile). The product was obtainedas a yellow solid.HPLC: CH3CN/H2O (70:30; isocratic). Yellow solid (20 mg,0.09 mmol, 10%);1H NMR (CDCl3): delta 4.39 (app. q, JHH, HF 2.2 Hz, 4H, CpH),3.91e3.89 (app. m, 4H, CpH). 13C NMR (CDCl3): delta 135.9 (d,1JCF 269 Hz, C1,10), 62.5 (d, 3JCF 3.8 Hz, C3,30,4,40), 57.5 (d,2JCF 15.1 Hz, C2,20,5,50). 19F{1H} NMR (CDCl3): delta 189 (s). IR (solid): cm1 3108 (w), 1463 n(C-Caromatic, vs); 1242 n(CeF, m), 1020 (m),803 (vs), 634 (m). MS (EI): m/z 222 [M], 139 [M CpF], 128[Cp2]; calcd for C10H8F2Fe 222.Anal. Calcd for C10H8F2Fe: C, 54.10;H, 3.63. Found: C, 53.33; H, 3.70.

1293-65-8 1,1′-Dibromoferrocene 72376387, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Bulfield, David; Maschke, Marcus; Lieb, Max; Metzler-Nolte, Nils; Journal of Organometallic Chemistry; vol. 797; (2015); p. 125 – 130;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Part ( I)Preparation of 1-bromo-l’ -trimethylsilyl ferroceneTo 1, 1 ‘-dibromoferrocene (1Og, 29.08mmol) in dry THF (200ml) cooled to -780C (dry ice/acetone bath) was added n-butyllithium (11.05ml, 27.63mmol, 0.95eq) and the reaction was stirred under N2 for 30 min. Chlorotrimethylsilane (3.7ml, 29.08mmol, leq) was then added dropwise and the solution was then allowed to warm up to room temperature and further stirred for twelve hours resulting in a red solution.The reaction was then quenched with water, and stirred for a further fifteen minutes. The ethereal layer, containing product was separated and the aqueous layer was further extracted several times with diethyl ether. The combined ether fractions were dried over magnesium sulphate and filtered through celite. The ether solvent was removed by rotary evaporator (resulting in red oil) . The product was purified as the initial red band (petrol) by column chromatography. The resulting red oil was finally dried under vacuum: (7.11g, 73 % yield) .

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

Reference£º
Patent; LUCITE INTERNATIONAL UK LIMITED; WO2008/65448; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.

To a solution of 1,1?-dibromo ferrocene (1, 2.58 g, 7.50 mmol, 1.0 equiv) dissolved in tetrahydrofuran (40 mL) a 2.5 M solution of n-butyl lithium in hexane (2.85 mL, 7.13 mmol, 0.95 equiv) was added dropwise at-70 C. After stirring the reaction solution at this temperature for 1 h, chlorodi-2-(5-methyl)furyl phosphine (2c) (1.71 g, 7.50 mmol) was added in a single portion. The reaction mixture was stirred for 1 h at ambient temperature and was then concentrated in oil pump vacuum. The resulting residue was purified by column chromatography on alumina using a mixture of hexane-diethyl ether (ratio 5:1; v/v). After drying in oil pump vacuum the title compound was obtained as a pale yellow solid. Please, note that 3c could not be completely separated from P(Fc)(2-(5-Me)C4H2O)2 formed as by-product and hence was used without additional purification in further reactions. Anal. Calcd. for C20H18BrFeO2P (457.08 g/mol): C, 52.55; H, 3.97. Found: C, 54.22*; H 3.92*. Mp.: 77 C. IR (NaCl, /cm-1): 1019 (s, C-O-C), 1410/1446/1496/1593 (w, C=C), 2920/2951 (w, C-H), 3109 (w, =C-H). 1H NMR (500.30MHz, CDCl3, delta): 2.36 (s, 6H, CH3), 3.99 (pt, 3/4JHH=1.9Hz, 2H, Hbeta/C5H4Br), 4.31 (pt, 3/4JHH=1.9Hz, 2H, Halpha/C5H4Br), 4.38 (dpt, 4JPH=0.6Hz, 3/4JHH=2.0Hz, 2H, Hbeta/C5H4P), 4.47 (dpt, 3JPH=1.8Hz, 3/4JHH=2.0Hz, 2H, Halpha/C5H4P), 5.99 (ddq, 4JPH=1.4Hz, 3JHH=3.1Hz, 4JHH=1.0Hz, 2H, H4/5-MeC4H2O), 6.59 (ddq, 3JPH=1.9Hz, 3JHH=3.1Hz, 5JHH=0.2Hz, 2H, H3/5-MeC4H2O). 13C{1H} NMR (125.81MHz, CDCl3, delta): 14.1 (s, CH3), 68.5 (s, Cbeta/C5H4Br), 71.2 (s, Calpha/C5H4Br), 74.0 (d, 3JCP=5Hz, Cbeta/C5H4P), 75.5 (d, 1JCP=3Hz, Ci/C5H4P), 75.8 (d, 2JCP=18Hz, Calpha/C5H4P), 77.9 (s, Ci/C5H4Br), 107.0 (d, 3JCP=6Hz, C4/5-MeC4H2O), 121.1 (d, 2JCP=22Hz, C3/5-MeC4H2O), 150.2 (d, 1JCP=4Hz, C2/5-MeC4H2O), 156.7 (d, 3JCP=3Hz, C5/5-MeC4H2O). 31P{1H} NMR (202.5MHz, CDCl3, delta):-66.7 (s). *) The sample included 15% 1-di(2-(5-methylfuryl)phosphanyl)ferrocene (4b) which could not be separated from the title compound, 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Schreiner, Claus; Jeschke, Janine; Milde, Bianca; Schaarschmidt, Dieter; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 785; (2015); p. 32 – 43;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1293-65-8

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1293-65-8

General procedure: In a Schlenk tube CuI (1.2 mg, 6.3 mumol, 5 mol. %), the respective ligand (10-15 mol. %), the respective ferrocenyl halide (0.125 mmol), the respective phenol (0.25-0.35mmol), and a base (0.25 mmol) were dissolved in toluene (7.5 mL), and the reaction mixture was stirred at 110C for a given time (26-60 h). After evaporation of the volatiles the crude products were purified by column chromatography in cyclohexane-ethyl acetate.

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

Reference£º
Article; Frey, Guido D.; Hoffmann, Stephan D.; Zeitschrift fur Naturforschung – Section B Journal of Chemical Sciences; vol. 70; 1; (2015); p. 65 – 70;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1293-65-8

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1293-65-8

General procedure: In a Schlenk tube CuI (1.2 mg, 6.3 mumol, 5 mol. %), the respective ligand (10-15 mol. %), the respective ferrocenyl halide (0.125 mmol), the respective phenol (0.25-0.35mmol), and a base (0.25 mmol) were dissolved in toluene (7.5 mL), and the reaction mixture was stirred at 110C for a given time (26-60 h). After evaporation of the volatiles the crude products were purified by column chromatography in cyclohexane-ethyl acetate.

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

Reference£º
Article; Frey, Guido D.; Hoffmann, Stephan D.; Zeitschrift fur Naturforschung – Section B Journal of Chemical Sciences; vol. 70; 1; (2015); p. 65 – 70;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1293-65-8

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1293-65-8

Example 1; L11,1′ bis-[(Sp,Rc,SFe)(1-N,N- Dimethylamino)ethylferrocenyl)phenylphosphino] ferrocene L1To a solution of (R)-N, N-dimethyl-1-ferrocenylethylamine [(R)-Ugi’s amine] (3.09 g, 12 mmol) in Et2O (20 ml) was added 1.5 M t-BuLi solution in pentane(8.0 ml, 12.0 mmol) at -78 0C. After addition was completed, the mixture was warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to -78 0C again, and dichlorophenylphosphine (1.63 ml, 12.0 mmol) was added in one portion. After stirring for 20 min at -78 0C, the mixture was slowly warmed to room temperature, and stirred for 1.5 h at room temperature. The mixture was then cooled to -78 0C again, and a suspension of 1 ,1′ dilithioferrocene [prepared from 1 ,1′ dibromoferrocene(1.72 g, 5.0 mmol) and 1.5 M t-BuLi solution in pentane (14.0 ml, 21.0 mmol) in Et2O (20 ml) at -78 0C] was added slowly via a cannula. The mixture was warmed to room temperature and allowed to stir for 12 h. The reaction was quenched by the addition of saturated NaHCO3 solution (20 ml). The organic EPO layer was separated and dried over MgSO4 and the solvent removed under reduced pressure. The filtrate was concentrated. The residue was purified by chromatography (SiO2, hexane-EtOAc-Et3N = 85:10:5) to afford an orange solid (3.88 g, 85%) as a mixture of 95% his-(Sp,Rc,SFe) title compound L1 and 5% (Rp, Rc, S Fe-S p, Rc, S Fe) meso compound. The meso compound can be removed by further careful purification using chromatography (SiO2, hexane- EtOAc-Et3N = 85:10:5). Orange/yellow crystalline solid m.p. 190-192 0C. [alpha]D = -427 (c=0.005 (g/ml), toluene); 1H NMR (CDCI3, 400.13 MHz): delta 1.14 (d,6H,J = 6.7 Hz), 1.50 (s, 12H); 3.43 (m; 2H); 3.83 (m, 2H); 3.87 (m, 2H); 4.01 (s, 10H), 4.09 (t, 2H, J = 2.4 Hz); 4.11 (m, 2H); 4.20 (m, 2H); 4.28 (m, 2H); 4.61 (m, 2H); 4.42 (d, 2H1 J = 5.3 Hz); 7.18 (m, 6H); 7.42(m, 4H) ppm. 13C NMR (CDCI3, 100.61 MHz): delta 38.28, 57.40 (d, J = 5.6 Hz); 67.02, 69.04 (d, J = 4.0 Hz); 69.16 (d, J = 51.6 Hz); 69.66, 71.60 (d, J = 4.8 Hz), 71.91 (d, J = 7.2 Hz), 72.18 (d, J = 5.6 Hz), 75.96 (d, J = 35.7 Hz), 79.96 (d, J = 6.4 Hz), 95.73 (d, J = 19.1 Hz), 127.32 (d, J = 7.9 Hz), 127.62, 133.12 (d, J = 21.4 Hz), 139.73 (d, J = 4.0 Hz). 31P NMR (CDCI3, 162 MHz): delta -34.88 (s). Found: C, 65.53; H, 5.92; N 3.01 Calculated for C50H54Fe3N2P2; C, 65.81 ; H, 5.97; N, 3.07. HRMS (1OeV, ES+): Calcd for C50H55Fe3N2P2 [M+H]+: 913.1889; Found: 913.1952. The label SP refers to S configuration at phosphorus, Rc refers to R configuration at carbon (or other auxiliary) and Spe refers to S configuration at the planar chiral element.

1293-65-8 is used more and more widely, we look forward to future research findings about 1,1′-Dibromoferrocene

Reference£º
Patent; PHOENIX CHEMICALS LTD.; WO2006/75177; (2006); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.,1293-65-8

1 ,1′-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, ?-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4,5- dichlorophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 2 hours before heating to approximately 90 C for 12 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals.

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion