Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.

General procedure: At 78 C, 1.6M n-butyllithium in hexane (1.25 mL) was addeddropwise to a solution of 1,10-dibromoferrocene (0.69 g, 2.0 mmol)in 10 mL THF. The reaction mixture was stirred at the same temperaturefor 0.5 h before adding 2,2,6,6-tetramethylpiperidine(0.40 mL, 2.2 mmol) dropwise. The reaction mixture was stirredfor 3 h, keeping the temperature below 40 C. A solution of tetramethylthiuramdisulfide (0.48 g, 2.0 mmol) in 20 mL THF wasadded, and the reaction mixture was slowly warmed to roomtemperature. After adding water (5 mL), the reaction mixture wasextracted with dichloromethane (2 x 40 mL). The collected organiclayers were washed with water (2 x 20 mL) and dried with anhydroussodium sulfate. After removing the solvent under reducedpressure, the crude product was purified by column chromatography(alumina, dichloromethane/hexane 3:7) to afford P1 as ayellow solid (0.33 g, 43%).

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Horikoshi, Ryo; Sumitani, Ryo; Mochida, Tomoyuki; Journal of Organometallic Chemistry; vol. 900; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Brief introduction of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

120 ml (0.3 mol) of n-BuLi (2.5 M in hexane) are added dropwise at a temperature of <-30C to a solution of 103 g (0.3 mol) of 1 ,1 '-dibromoferrocene in 300 ml of THF. The mixture is stirred further at this temperature for 1.5 hours. The mixture is then cooled to -500C, and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are slowly added dropwise at such a rate that the temperature does not rise above -45C. After stirring for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After adding 150 ml of water, the reaction mixture is extracted by shaking with hexane. The organic phases are dried over sodium sulphate, and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product 13 is obtained with a yield of 84% (yellow solid). 1H NMR (300 MHz, C6D6): delta 1.20-2.11 (m, 22H), 3.97 (m, 2H), 4.23 (m, 2H), 4.26 (m, 2H), 4.41 (m, 2H). 31P NMR (121.5 MHz, C6D6): delta -8.3 (s). The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings. Reference£º
Patent; Solvias AG; WO2007/135179; (2007); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Brief introduction of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a Schlenk flask (10 mL) equipped with a magnetic stir bar, 1,1′-dibromoferrocene (120 mg, 34.9 mumol) and THF (0.53 mL) were placed. A pentane solution of t-BuLi (0.88 mL, 1.6 M, 1.4 mmol) was dropwise added to the solution at -50 C and the resulting mixture was stirred at below -30 C for 1 h. Then, a THF suspension (3.5 mL) of compound 4 (448 mg, 704 mumol) was added to the resulting yellow suspension at -50 C and stirred at ambient temperature. After 0.5 h, the reaction mixture was quenched with water and the crude mixture was extracted with hexane. The organic layer was dried over anhydrous sodium sulfate. After removal of the resulting salt by filtration and the solvent in vacuo, the residue was subjected to silica gel column chromatography (eluent: hexane) and gel permeation chromatography (eluent: toluene). Recrystallization from hexane gave the title compound (50.8 mg, 39.2 mumol, 11%) as yellow crystals.

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Kishimoto, Yusuke; Ishida, Shintaro; Iwamoto, Takeaki; Chemistry Letters; vol. 45; 2; (2016); p. 235 – 237;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion