The important role of 14024-18-1

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Name is Iron(III) acetylacetonate, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 14024-18-1, its synthesis route is as follows.,14024-18-1

Fe3O4 nanoparticles were prepared by the following synthetic procedure, which was based on our previous study [29]: the reaction was carried out in the 100 mL three-necked round-bottom flask equipped with a condenser and a thermometer. The heating was carried out by a heating mantle. Iron acetylacetonate (III) (1 mmol) and 1,2-hexadecanediol (3.0 mmol) as Fe3+ reducing agent were added into a mixture of oleic acid (15 mmol) and distilled oleylamine (15 mmol). The solution was maintained at 130 C for 30 min with vigorous stirring under a reduced atmosphere (ca. 200 Pa) for dissolution and removal of impurities such as water molecules and organic molecules with low boiling temperatures. In this phase, the solution color was dark brown. Then, the solution was heated to reaction temperatures of 200 C, 250 C, 280 C, and 300 C for 1 h, 3 h, and 6 h under a nitrogen atmosphere (1 atm.). The solution color changed to black. Finally, the solution was left to cool to room temperature by remove of the heat source. When the solution becomes hard or loses fluidity after cooling to room temperature, the resulting solidified solution was dissolved by adding 10 mL n-hexane before the following precipitation process. The iron oxide nanoparticles were precipitated by the addition of ethanol (70~80 mL) and were subsequently subjected to centrifugation (3000 g, 10 min).The precipitated nanoparticles were redispersed into n-hexane.

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Reference£º
Article; Nakaya, Masafumi; Nishida, Ryo; Muramatsu, Atsushi; Molecules; vol. 19; 8; (2014); p. 11395 – 11403;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 14024-18-1

14024-18-1, The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14024-18-1,Iron(III) acetylacetonate,as a common compound, the synthetic route is as follows.

A typical procedure for preparation of oil-soluble magnetite nanoparticles is briefly described as follows: first, 20 mL of diethylene glycol, 0.70 g (2 mmol) of iron (III) acetylacetonate, and 1.06 mL (3 mmol) of oleic acid were mixed in a 50 mL Teflon-lined stainless autoclave while magnetically stirring. Then, the autoclave was put into oven, kept at 180C for 5 h. After cooled to room temperature naturally, 40 mL ethanol was added to yield a black precipitate. The black Fe3O4 precipitate was separated by centrifuging at 10,000 rpm for 20 min, and re-dispersed in 10 mL of hexane or dried at 60C under vacuum for 24 h. (The as-prepared product was donated as SO1.) The as-synthesized Fe3O4 colloid in hexane is hydrophobic and stable for nearly a year, while the dried Fe3O4 sample can be stable for several months. The synthesis of water-soluble magnetite nanoparticles was carried out only by reacting an iron precursor, iron (III) acetylacetonate (Fe(acac)3), in the polyol medium (diethylene glycol) without oleic acid under the same reaction conditions. After cooling down to room temperature, 40 mL of ethyl acetate was added to the reaction solution resulted in a black precipitation of magnetite nanoparticles which was then separated from the solution by centrifuging at 10,000 rpm for 20 min. After washed with ethyl acetate for three times, the precipitation was re-dispersed in polar solvents such as ethanol and water for further investigation. The Fe3O4 solid productions could also be obtained by drying the precipitation at 60C under vacuum for 24 h. (The as-prepared product was donated as SW1.)

14024-18-1, The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Chen, Fenghua; Zhao, Taonan; Chen, Qingtao; Han, Lifeng; Fang, Shaoming; Chen, Zhijun; Materials Research Bulletin; vol. 48; 10; (2013); p. 4093 – 4099;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 14024-18-1

14024-18-1, The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

14024-18-1, Iron(III) acetylacetonate is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

The synthesis of Fe3O4 NPs refers to the previousmethod.19 18 1,2-hexadecanediol (10 mM), Fe(acac)3(2 mM), oleicacid (6 mM) and oleylamine (6 mM) wereadded into 20 mL of diphenyl ether, and stirred vigorouslyunder the protection of nitrogen. The mixture wereheated at 473 K for 45 min, then refluxed under the protectionof nitrogen at 538 K for 120 min to prepare thegrey-black mixture. After cooled down to the room temperature,60 mL of ethanol was added, the raw productswere collected by centrifugation, and then dispersed into10 mL of n-hexane. The ethanol (60 mL) was added, followedby centrifugation, and the procedure was repeatedfor 8-10 times in order to clean thoroughly. Finally, the5-nm Fe3O4 nanoparticles were synthesized and preservedin n-hexane.

14024-18-1, The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Gan, Qi; Zhu, Jiaoyang; Yuan, Yuan; Liu, Changsheng; Journal of Nanoscience and Nanotechnology; vol. 16; 6; (2016); p. 5470 – 5479;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Iron(III) acetylacetonate

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Name is Iron(III) acetylacetonate, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 14024-18-1, its synthesis route is as follows.,14024-18-1

In a 100 mL Schlenk tube 1.00 g (2.83 mmol) of Iron(III)-acetylacetonate (Fe(AcAc)3), synthesized as reported in Bondioliet al., [13] was dissolved in different amounts of BzOH in order to evaluate the effect of the Fe(AcAc)3:BzOH ratio on the powder properties (see composition details in Table 1). The reaction was left stirring at room temperature for 15 min and then heated to 200C in an oil bath for 48 h. The main reaction occurring in the solvothermal treatment of Iron(III)-acetylacetonate in benzyl alcoholis summarized in the scheme of Fig. 1. After reaction a stable suspension was obtained. To better characterize the inorganic phase, the obtained powders were dispersed in methanol with an ultrasonic bath and centrifuged at 4000 rpm for 60 min; the powders were washed, centrifuged till the obtainment of a colourless liquid phase and finally dried under reduced pressure.

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Reference£º
Article; Sciancalepore, Corrado; Bondioli, Federica; Messori, Massimo; Barrera, Gabriele; Tiberto, Paola; Allia, Paolo; Polymer; vol. 59; (2015); p. 278 – 289;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Iron(III) acetylacetonate

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO134,mainly used in chemical industry, its synthesis route is as follows.,14024-18-1

Monodisperse iron oxide nanoparticles were synthesized by amethod developed by Sun et al. [41]. Briefly, the superparamagneticiron oxide nanoparticles (SPIO) were synthesized by mixing 2 mmolFe(acac)3 (Iron III Acetylacetonate), 10 mmol 1,2-dodecanediol,6 mmol oleic acid, 6 mmol oleylamine, and 20 mL benzyl ether undera constant flow of nitrogen. The mixture was stirred and preheated toreflux (200 C) for 30 min, and then heated to 300 C for another 1 hunder nitrogen. The black-brown mixture was allowed to cool toroom temperature, and then 50 mL ethanol was added for the precipitationprocess. The products, iron oxide nanoparticles, were collectedby centrifugation at 6000 rpm for 10 min and then washed 4times with an excess of pure ethanol. Afterward, the hydrophobiciron oxide nanoparticles (~5 nm, synthesized from an oleic acidprocess) were centrifuged to remove solvent and redispersed in chloroform.

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate,belong iron-catalyst compound

Reference£º
Article; Li, Wei-Ming; Chiang, Chih-Sheng; Huang, Wei-Chen; Su, Chia-Wei; Chiang, Min-Yu; Chen, Jian-Yi; Chen, San-Yuan; Journal of Controlled Release; vol. 220; (2015); p. 107 – 118;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Iron(III) acetylacetonate

With the complex challenges of chemical substances, we look forward to future research findings about 14024-18-1,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Iron(III) acetylacetonate, and cas is 14024-18-1, its synthesis route is as follows.,14024-18-1

Fe(acac)3 (176.5 mg), 1,2-hexadecanediol (645 mg), oleic acid (0.5 mL), oleylamine (0.5 mL), and octadecene (10 mL) were mixed and magnetically stirred under a flow of nitrogen. The mixture was heated to 200 C. for 30 min and then, under a blanket of nitrogen, heated to reflux (?300 C.) for another 30 min. The black-brown mixture was cooled to room temperature by removing the heat source. Under ambient conditions, ethanol (40 mL) was added to the mixture, and a black material was precipitated and separated via centrifugation. The product, Fe3O4 nanoparticles, was redispersed into hexane for storage.

With the complex challenges of chemical substances, we look forward to future research findings about 14024-18-1,belong iron-catalyst compound

Reference£º
Patent; Hong Kong Baptist University; YUNG, Kin Lam; LUI, Nga Ping; TSANG, Shik Chi; PENG, Yung Kang; US2015/335767; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 14024-18-1

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Name is Iron(III) acetylacetonate, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 14024-18-1, its synthesis route is as follows.,14024-18-1

10.5 g iron (III) acetylacetonate and 220 g benzyl alcohol are heated while stirring in a glass retort to 50-70 C for 1 h. The heating rate is 25 C/h. Heating is stopped 30 min after the reaction mixture temperature reaches the boiling point. The reaction mixture is cooled to room temperature and added with 90 ml of acetone, and nanoparticles are settled down by centrifugation at 900g for 19 min.

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Reference£º
Patent; NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY “MISIS”; ABAKUMOV, Maxim Artemovich; MAJOUGA, Alexander Georgievich; (21 pag.)WO2019/93923; (2019); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of Iron(III) acetylacetonate

With the synthetic route has been constantly updated, we look forward to future research findings about Iron(III) acetylacetonate,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Iron(III) acetylacetonate,14024-18-1,Molecular formula: C15H21FeO6,mainly used in chemical industry, its synthesis route is as follows.,14024-18-1

A slurry of Fe(acac)3 (25 mg) in benzylalcohol (5.0 g)with carbon sphere (50 mg) was heated to 180 C under anargon atmosphere. The reaction mixture was maintainedat this temperature for 3 h, and the resulting dark-brownreaction mixture was cooled to room temperature. Theresidue was washed with ethanol to provide dark-brownCarbon/Fe3O4 powders with particle sizes of 320¡À27 nm.The Carbon/Fe3O4 powders were loaded in an aluminaboat in a box furnace and were annealed at 500 C for3 h under an atmospheric pressure of air, producing hollowFe2O3 nanospheres.

With the synthetic route has been constantly updated, we look forward to future research findings about Iron(III) acetylacetonate,belong iron-catalyst compound

Reference£º
Article; Oh, Kyung Hee; Park, Hyung Ju; Kang, Shin Wook; Park, Ji Chan; Nam, Ki Min; Journal of Nanoscience and Nanotechnology; vol. 18; 2; (2018); p. 1356 – 1360;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 14024-18-1

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Name is Iron(III) acetylacetonate, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 14024-18-1, its synthesis route is as follows.,14024-18-1

General procedure: A solvothermal method was implemented to prepare CuFe2O4and Fe3O4 NPs. For the synthesis of Fe3O4 NPs, 4 mmol of Fe(acac)3 and 40 ml of triethylene glycol were mixed in a 200 ml round bottom flask connected to a reflux condenser. To homogenize thesolution, the temperature was increased to 100 C and maintainedat this temperature for 1 h. Afterwards the obtained homogenoussolutionwas transferred to a Teflon lined autoclave (75 ml capacity)and then placed in a furnace at 260 C for 24 h. Next, the mixturewas left to cool down to room temperature, which resulted in a black homogeneous dispersion containing magnetite nanoparticles.The obtained product was washed with acetone severaltimes using centrifugation. Then, the nanoparticles were put to dryin an oven at 50 C for 12 h. For the synthesis of CuFe2O4 NPs, thesame procedure was employed except that the stoichiometricamount of Cu(acac)2 was added to the triethylene glycol at the firstof synthesis process. Briefly, the synthesis process is schematicallyshown in Fig. 1.

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate

Reference£º
Article; Fotukian, Seyedeh Maryam; Barati, Aboulfazl; Soleymani, Meysam; Alizadeh, Ali Mohammad; Journal of Alloys and Compounds; vol. 816; (2020);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Iron(III) acetylacetonate

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO82,mainly used in chemical industry, its synthesis route is as follows.,14024-18-1

Fe(acac)3 (706 mg, 2 mmol), 1,2-dodecanediol (2.023 g,10 mmol), oleic acid (1.695 g, 6 mmol), oleylamine (1.605 g,6 mmol), and diphenyl ether (20 mL) were mixed and magnetically stirred under a flow of argon. The mixture was heated to 200Cfor 30 min and then heated to 280C for another 30 min. Theblack-brown mixture was cooled to room temperature under argon atmosphere. A black material was precipitated with ethanoland separated via centrifugation. The black product was dissolvedin hexane, precipitated with ethanol, centrifuged to remove the solvent, and dispersed into hexane. Fe3O4nanoparticles wereobtained after evaporation of hexane at room temperature (yield:31%).

With the complex challenges of chemical substances, we look forward to future research findings about Iron(III) acetylacetonate,belong iron-catalyst compound

Reference£º
Article; Yuan, Weizhong; Shen, Jin; Li, Lulin; Liu, Xu; Zou, Hui; Carbohydrate Polymers; vol. 113; (2014); p. 353 – 361;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion