Analyzing the synthesis route of 102-54-5

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocene, and cas is 102-54-5, its synthesis route is as follows.

To a solution of ferrocene (1; 5.00 g, 26.87 mmol) in anhydrous CH 2 Cl 2(30 mL), a solution of acetyl chloride (2.01 mL, 28.21 mmol) and AlCl 3(3.94 g, 29.55 mmol) in anhydrous CH 2 Cl 2 (40 mL) was added at 0 C.The reaction temperature was allowed to rise to r.t., and the dark-vio-let solution was stirred for 2 h. The reaction was quenched by addi-tion of ice-cold water (70 mL) at 0 C and the mixture was extractedwith CH 2 Cl 2 (3 ¡Á 70 mL). The collected organic layers were washedwith a solution of Na 2 CO 3 (50 mL), dried over Na 2 SO 4 , filtrated and thesolvent was removed under reduced pressure. Crude product (dark-orange solid) was purified by chromatography on SiO 2 (hexanes/EtOAc = 4:1; R f = 0.3) to afford target product 2.Yield: 4.45 g (73%); orange solid; mp 85-86 C (lit. 20 85-86 C).1 H NMR (300 MHz, CDCl 3 ): delta = 4.78-4.76 (m, 2 H), 4.55-4.42 (m, 2 H),4.20 (s, 5 H), 2.40 (s, 3 H).NMR spectra are in agreement with those of the commercially avail-able product.

102-54-5, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,102-54-5 ,Ferrocene, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Plevova, Kristina; Mudrakova, Brigita; ?ebesta, Radovan; Synthesis; vol. 50; 4; (2018); p. 760 – 763;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1271-42-7

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

1271-42-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenecarboxylic acid, cas is 1271-42-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Following the similar procedure reported by Guimond et. al 5 To a solution of ferrocecarboxylic acid (2.300 g, 10.0 mmol) in dry CH2Cl2 (30 mL) at 0 C under N2 was added dropwise oxalyl chloride (1.14 mL, 12.0 mmol) followed by a catalytic amount of dry DMF (2 drops). The reaction was allowed to stir at rt until completion (typically 8 h). The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenecarboxylic acid, 1271-42-7

Reference£º
Article; Liu, Hua-Yu; Mou, Rui-Qi; Sun, Chuan-Zhi; Zhang, Sheng-Yan; Guo, Dian-Shun; Tetrahedron Letters; vol. 57; 42; (2016); p. 4676 – 4679;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1273-82-1

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Aminoferrocene, 1273-82-1

1273-82-1, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Aminoferrocene, cas is 1273-82-1,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Example 1 Preparation of N,N-Dimethylaminoferrocene (11)19,20 A solution of aminoferrocene (1.07 g, 5.32 mmol) in acetic acid (15 mL) under argon was treated with paraformaldehyde (1.59 g, 53.2 mmol) and NaBH3CN (1.67 g, 26.6 mmol) and stirred at room temperature for 16 h. The reaction mixture was brought to pH 12 by addition of 6 M aqueous NaOH solution, and extracted with hexanes (3*20 mL). The combined organic extract was washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated to approx. 5% of its original volume under reduced pressure. The solution was filtered through basic alumina (20 mL) with hexanes, concentrated back to its pre-filtration volume and left to crystallize in a freezer to give N,N-dimethylaminoferrocene (11) (1.11 g, 91%) as orange flakes; mp 69-70 C. (hexanes); IR (KBr) vmax 3106, 2981, 2952, 2857, 2827, 2782, 1508 cm-1, 1H NMR (300 MHz, CDCl3) 4.25 (s, 5H), 3.93 (s, 2H), 3.78 (s, 2H), 2.59 (s, 6H); 13C NMR (75.5 MHz, acetone-d6) 115.8, 66.5, 63.0, 54.6, 41.5; EIMS [m/z(%)] 229 (M+, 100), 186 (18), 121 (17); HRMS (EI) calcd for C12H16N56Fe: 229.0554. found 229.0553. Anal. Calcd for C12H16N56Fe: C, 62.91; H, 6.60. Found: C, 62.95; H, 6.60.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Aminoferrocene, 1273-82-1

Reference£º
Patent; BROCK UNIVERSITY; US2010/137588; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1287-16-7

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

Under ice cooling, 0.57 mL (4 mmols) of triethylamine was added to a mixture of 0.5 g (2 mmols) of ferroceneacetic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 0.44 mL (2 mmols) of diphenylphosphyrylazide and 4 mL of toluene. The mixture was stirred at room temperature for 30 minutes. The reaction mixture was diluted with dichloromethane. The dilution was washed sequentially with a 1% hydrochloric acid aqueous solution and saturated sodium hydrogencarbonate solution. After drying over anhydrous magnesium sulfate, the organic layer was filtered and concentrated under reduced pressure to give 4 mL of the toluene solution. To the toluene solution obtained, 2 mL of toluene was added and 0.32 g (3 mmols) of ethyl carbazate was added to the mixture while stirring at room temperature. The mixture was then heated under reflux for 3 hours and diluted with dichloromethane. The dilution was washed sequentially with a 1% hydrochloric acid aqueous solution and saturated sodium hydrogencarbonate solution. After drying over anhydrous magnesium sulfate, the organic layer was filtered and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform : methanol = 20:1) to give 0.55 g (78%) of ethyl 3-(ferrocenylmethyl)carbamoylcarbazate as a yellow oily substance. 1H NMR (CDCl3) delta: 1.27 (3H, t, J=7.3 Hz), 4.0-4.3 (13H, m), 5.59 (1H, m), 6.59 (1H, s), 6.66 (1H, s)

The chemical industry reduces the impact on the environment during synthesis,1287-16-7,Ferrocenylacetic acid,I believe this compound will play a more active role in future production and life.

Reference£º
Patent; CHUGAI SEIYAKU KABUSHIKI KAISHA; EP1533316; (2005); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 12093-10-6

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.

General procedure: To a solution of [CpRu(PPh3)2Cl] (1 mol%) and solid aldehyde (1.0 mmol) in toluene (3 ml) was added PhSiH3 (1.2 mmol). The reaction mixture was stirred at reflux temperature under an air atmosphere (the reaction times are indicated in Table 4). Then, TBAF (1.0 mmol) was added and the reaction mixture was stirred at room temperature during 30 min. After evaporation, the reaction mixture was purified by silica gel column chromatography with ethyl acetate:n-hexane (1:3) to afford the corresponding alcohols.

12093-10-6, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,12093-10-6 ,Ferrocenecarboxaldehyde, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Cabrita, Ivania R.; Florindo, Pedro R.; Fernandes, Ana C.; Tetrahedron; vol. 73; 11; (2017); p. 1511 – 1516;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Share a compound : 1271-51-8

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Vinylferrocene, 1271-51-8

1271-51-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Vinylferrocene, cas is 1271-51-8,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

About 424 mg (about 2 mmol) of vinylferrocene, about 312 mg (about 0.5 mmol) of tris(4-iodophenyl)amine and about 7 mg (about 6 mol percent) of palladium acetate were placed in a flask. After a reflux condenser was connected to the flask, about 3 ml of 1,4-dioxene as a solvent, about 480 mul (about 2 mmol) of tri-n-butylamine as a base and about 11 mul (about 9 mol percent) of tri-t-butylphosphine were injected into the flask using a syringe under a nitrogen atmosphere. The solution was degassed with nitrogen gas, and refluxed in an oil bath. The reaction was allowed to proceed for about 4 days. The reaction solution was diluted with about 10 ml of methylene chloride and neutralized with a saturated aqueous solution of ammonium chloride. The neutralized solution was transferred to a separatory funnel, followed by phase separation. The obtained organic layer was dried over anhydrous magnesium sulfate and passed through a glass filter to obtain a transparent polymer solution. The polymer solution was evaporated under reduced pressure to remove the solvents. The residue was purified by column chromatography using toluene/hexane (1/2), yielding the metallocenyl dendrimer (about 301 mg) of Formula 2 as an orange solid. The 1H-NMR spectrum of the metallocenyl dendrimer is shown in FIG. 3.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Vinylferrocene, 1271-51-8

Reference£º
Patent; Choi, Tae Lim; Lee, Kwang Hee; Lee, Sang Kyun; US2011/213172; (2011); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenylacetic acid

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenylacetic acid, and cas is 1287-16-7, its synthesis route is as follows.

1) 1.2 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-chlorophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then p-toluenesulfonic acid 0.12 mmol,Then 6 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,380W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,The crude product of 3- (4-chlorophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,Using a solvent mixture of DMF and absolute ethanol in a volume ratio of 5: 1,The crude product was recrystallized,That is, a brown solid,The yield is 85%

1287-16-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1287-16-7 ,Ferrocenylacetic acid, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenecarboxylic acid

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Name is Ferrocenecarboxylic acid, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-42-7, its synthesis route is as follows.

To a methylene chloride solution (3.6 mL) of ferrocenecarboxylic acid (manufactured by Tokyo Kasei) (237 mg),Triethylamine (102 mg) and oxalyl chloride (767 mg) were added under an argon atmosphere, and the mixture was stirred at room temperature for 5 hours. After the reaction solution was concentrated under reduced pressure, compound 3 (161 mg), 4-dimethylaminopyridine (26 mg), triethylamine (305 mg), and tetrahydrofuran (8.6 mL) were added. Stirred for hours. The reaction solution was poured into methylene chloride / water, and the organic layer was washed with saturated aqueous sodium chloride.The extract was washed with a solution, dried over sodium sulfate, and then concentrated under reduced pressure. Silica gel concentrated residuePurified by column chromatography (developing solvent: ethyl acetate / hexane = 1/5) and obtained crude productIs purified by size exclusion chromatography and washed with pentane to give the compound.Compound FcD (157 mg) was obtained.

1271-42-7, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,1271-42-7 ,Ferrocenecarboxylic acid, other downstream synthetic routes, hurry up and to see

Reference£º
Patent; The University of Tokyo; Aita, Takuzo; Ito, Yoshimitsu; Toku, Yongxiang; (19 pag.)JP2019/151597; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Ferrocenylacetic acid

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

1287-16-7, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. Ferrocenylacetic acid, cas is 1287-16-7,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1). 6-Ferrocene methylene-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole (1a) Brown solid; Yield: 82%; m.p.: 165-168 C; IR (KBr, nu/cm-1): 3085 (s), 2920 (m), 1604 (s), 656 (m), 487 (m); 1HNMR (CDCl3, 400 M, delta, ppm): 9.98 (s, 1H, N=CH), 4.30(s, 2H, C5H4),4.25 (s, 2H, C5H4),4.16 (s, 5H, C5H5),2.20(s, 2H, CH2);13C NMR (CDCl3, 100 M, delta, ppm): 167.6,161.0, 160.4, 137.2, 130.2, 121.3, 32.1; Anal. Cald. forC14H12N4SFe:C, 51.85; H, 3.70; N, 17.28; Found C, 51.68;H, 3.59; N, 17.51%.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of Ferrocenylacetic acid, 1287-16-7

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Iron(III) acetylacetonate

14024-18-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14024-18-1 ,Iron(III) acetylacetonate, other downstream synthetic routes, hurry up and to see

It is a common heterocyclic compound, the iron-catalyst compound, Iron(III) acetylacetonate, cas is 14024-18-1 its synthesis route is as follows.

Monodisperse iron oxide nanoparticles were synthesized by amethod developed by Sun et al. [41]. Briefly, the superparamagneticiron oxide nanoparticles (SPIO) were synthesized by mixing 2 mmolFe(acac)3 (Iron III Acetylacetonate), 10 mmol 1,2-dodecanediol,6 mmol oleic acid, 6 mmol oleylamine, and 20 mL benzyl ether undera constant flow of nitrogen. The mixture was stirred and preheated toreflux (200 C) for 30 min, and then heated to 300 C for another 1 hunder nitrogen. The black-brown mixture was allowed to cool toroom temperature, and then 50 mL ethanol was added for the precipitationprocess. The products, iron oxide nanoparticles, were collectedby centrifugation at 6000 rpm for 10 min and then washed 4times with an excess of pure ethanol. Afterward, the hydrophobiciron oxide nanoparticles (~5 nm, synthesized from an oleic acidprocess) were centrifuged to remove solvent and redispersed in chloroform.

14024-18-1, In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles.,14024-18-1 ,Iron(III) acetylacetonate, other downstream synthetic routes, hurry up and to see

Reference£º
Article; Li, Wei-Ming; Chiang, Chih-Sheng; Huang, Wei-Chen; Su, Chia-Wei; Chiang, Min-Yu; Chen, Jian-Yi; Chen, San-Yuan; Journal of Controlled Release; vol. 220; (2015); p. 107 – 118;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion