Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1,1′-Dibromoferrocene, 1293-65-8
1293-65-8, In the next few decades, the world population will flourish. As the population grows rapidly and people all over the world use more and more resources, all industries must consider their environmental impact. 1,1′-Dibromoferrocene, cas is 1293-65-8,the iron-catalyst compound, it is a common compound, a new synthetic route is introduced below.
1,10-Dibromoferrocene [23] (1.8 g, 5.2 mmol) was dried for 3 h at2 * 102 mbar. Subsequently it was dissolved in dry tetrahydrofuran(20 ml) and cooled to 78 C, causing a clear orange solution. Nbutyllithiumin n-hexane (3.7 ml, 5.6 mmol, 1.6 M) was addedslowly over 15 min. The resulting suspension was stirred for anadditional 30 min. In a second Schlenk flask, a suspension of NFSI(1.81 g, 5.8 mmol, dried for 3 h in vacuo) in diethylether (20 ml) wasprepared. After 30 min the reaction mixture was transferred intothe NFSI solution via cannula. Directly after the addition the solutionwasquenched with NaBH4 and 50 ml of 0.1MCa(OH)2, and theresulting slurry was diluted with hexane (100 ml). The two phasesystem was stirred for 1 h, the organic phase was separated andwashed three times with water. After evaporation of the solvent invacuo, the resulting brown oil was dissolved again in 50 ml ofhexane and the organic phasewas extracted thrice with 0.2MFeCl3solution and subsequently 3 times with water. The organic phasewas filtered through alumina (Activity III, diameter 2 cm, length25 cm) and dried with MgSO4. After the solvents were evaporatedthe crude product was purified by HPLC (isocratic CH3CN/H2O(70:30); isocratic). The HPLC fractions were extracted with hexane(4 20 ml). The organic phase was dried with MgSO4 and evaporatedin vacuo, leaving the product as a browneorange oil.HPLC: CH3CN/H2O (70:30; isocratic). Browneorange oil (674 mg,2.40 mmol, 46%);1H NMR (CDCl3): delta 4.51 (app. s, 2H, CpH, H2?,5?), 4.33 (app. s, 2H,CpH,H2,5), 4.21 (app. s, 2H, CpH,H3?,4?), 3.88 (app. s, 2H, CpH,H3,4). 13CNMR (CDCl3): delta 135.6 (d, 1JCF 270 Hz, C1), 78.1 (s, C1?), 71.6 (s, C2?,5?),68.6 (s, C3?,4?), 64.0 (d, 3JCF 3.8 Hz, C3,4), 58.7 (d, 2JCF 15.0 Hz, C2,5).19F{1H} NMR (CDCl3): delta 189 (s). IR (ATR): cm-1 3110 (w), 1471 n(CCaromatic,vs); 1242 n(CeF, m),1152 (m), 807 (vs), 657 (m).MS(EI): m/z282 [M], 128 [Cp2]; calcd for C10H8FBrFe 282. Anal. Calcd forC10H8FBrFe: C, 42.45; H, 2.85. Found: C, 42.26; H, 2.86.
Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1,1′-Dibromoferrocene, 1293-65-8
Reference£º
Article; Bulfield, David; Maschke, Marcus; Lieb, Max; Metzler-Nolte, Nils; Journal of Organometallic Chemistry; vol. 797; (2015); p. 125 – 130;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion