Simple exploration of 1271-42-7

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Oxalyl chloride (0.058 mL, 0.66 mmol) was added dropwise over 1 min to a solution of ferrocene monocarboxylic acid (0.0777 g, 0.338 mmol) in dichloromethane (3.0 mL) and N,N-dimethylformamide (1-3 drops). The mixture stirred for 30 min and concentrated with a stream of nitrogen gas, and then subjected to vacuum for 10 min. The resultant crude oil was used without further purification.

1271-42-7, 1271-42-7 Ferrocenecarboxylic acid 499634, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Jones, Ian M.; Knipe, Peter C.; Michaelos, Thoe; Thompson, Sam; Hamilton, Andrew D.; Molecules; vol. 19; 8; (2014); p. 11316 – 11332;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Vinylferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO479,mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

General procedure: In an Schlenk tube under argon one of the following central coresC1, or C2 was mixed with 5percent palladium (II) acetate, Pd(OAc)2, 10percentTris(o-tolyl)phosphine, P(o-tol)3, and vinyl ferrocene, 1-Fc, in triethylamine/THF, 15 mL/15 mL. The resulting mixture was stirred and refluxedovernight. After removing the solvent under reduced pressure,the oil obtained was washed with distillated water and extracted inCH2Cl2 three times and dried over MgSO4. The extract was concentratedto dryness and purified by column chromatography (silica gel60) using hexane/CH2Cl2 2:1 (V/V) mixtures as eluent. The correspondingcompounds were isolated after removing the solvent in a rotaryevaporator.

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

Reference£º
Article; Santos, Juan C.; Madrid-Moline, Franco; Cisternas, Carlos A.; Paul, Frederic; Escobar, Carlos A.; Jara-Ulloa, Paola; Trujillo, Alexander; Inorganica Chimica Acta; vol. 486; (2019); p. 95 – 100;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1271-51-8

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

1271-51-8, Vinylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: 25mL reaction flask, weighing 2molpercent palladium acetate and 4molpercent ferrocenylpyrimidine multidentate ligand 6h, adding 12 water, stirring for 5min, 4 mmol of p-nitrochlorobenzene, 4.8 mmol of butyl acrylate, 6 mmol of potassium phosphate, and 0.8 mmol of tetrabutylammonium bromide were added successively. The reaction was heated to 80¡ãC until the reaction was complete (the reaction did not continue after about 6 h, and palladium black appeared in the reaction flask). After adding 25 mL of ethyl acetate and washing three times with water, the organic phases were combined, dried over anhydrous sodium sulfate, concentrated, and the residue was separated by column chromatography. PE/EA=12:1 was used as an eluent to obtain 707 mg of a yellow solid with a yield of 71percent.

1271-51-8, 1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Zhengzhou University of Light Industry; Yu Shuyan; Zhang Tongyan; Wang Ruijuan; Yin Zhigang; Yang Xuzhao; Lan Hongbing; (13 pag.)CN107383112; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Vinylferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO425,mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

General procedure: General procedure: In a J-Young NMR tube substrate(0.10 mmol), catalyst precursor 15 (23.5 mg, 0.02 mmol) andB(C6F5)3 (2.6 mg, 0.005 mmol) were dissolved in C6D6 (0.7 mL).After 30 min the atmosphere was removed, dihydrogen (2 bar)applied and the reaction monitored by 1H NMR spectroscopy.Conversion was determined from the 1H NMR spectra. (see theSupporting Information for control experiments and spectroscopicdata of hydrogenation products 17a-l).

With the synthetic route has been constantly updated, we look forward to future research findings about Vinylferrocene,belong iron-catalyst compound

Reference£º
Article; Woelke, Christian; Daniliuc, Constantin G.; Kehr, Gerald; Erker, Gerhard; Journal of Organometallic Chemistry; vol. 899; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

To a solution of ferrocenylmethanol (1.62 g, 7.5 mmol) in dry THF (15mL), NaH (0.45 g) were added slowly at 0 C. After stirring for 0.5 h,1-bromo-4-(bromomethyl)benzene (1.88 g, 7.5 mmol) in THF (10 mL) wasadded dropwise and the reaction mixture was stirred overnight at 60 C. Thereaction mixture was quenched with saturated aq. NH4Cl (50 mL) at 0 C andextracted with CH2Cl2. The organic extracts were washed with brine, dried overanhydrous Na2SO4 and concentrated under reduced pressure. The residue waspurified by column chromatography to afford a yellow solid (2.25 g, 78%). 1HNMR (CDCl3, 400 Hz, delta/ppm) 7.47 (dt, J1 = 8.4 Hz, J2 = 2 Hz, 2H,), 7.21 (d, J= 8.4 Hz, 2H), 4.45 (s, 2H), 4.32 (s, 2H), 4.24 (t, J = 1.6 Hz, 2H), 4.17 (t, J =1.6 Hz, 2H), 4.12 (s, 5H); 13C NMR (CDCl3, 100 Hz, delta/ppm) 137.6, 131.4,129.3, 121.3, 83.1, 70.8, 69.4, 68.6, 68.5, 68.4.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Meng, Zhengong; Wei, Zhuoxun; Fu, Kuo; Lv, Lei; Yu, Zhen-Qiang; Wong, Wai-Yeung; Journal of Organometallic Chemistry; vol. 892; (2019); p. 83 – 88;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 14024-18-1

14024-18-1, As the paragraph descriping shows that 14024-18-1 is playing an increasingly important role.

14024-18-1, Iron(III) acetylacetonate is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

177 mg of Fe (acac) 3 (0.5 mmol) Is dissolved in diphenyl ether 0.56 mL of oleic acid (1.5 mmol), 0.64 mL of oleylamine (1.5 mmol) And 646 mg of 1,2-hexadecane diol (2.5 mmol) At 260 C for 1 hour 30 minutes Min in a nitrogen atmosphere. The gold-coated nanoparticles of the iron oxide core nanoparticles prepared by the above reaction were subjected to the following procedure Respectively. To 10 mL of iron oxide nanoparticle solution, 0.3 g Of gold acetate, 0.1 mL of oleic acid (0.3 mmol), 0.45 ML of oleylamine (1.1 mmol) and 800 mg of 1,2-hexadecane diol (3.1 mmol) was added 180 degrees to 1 hour 30 Min in a nitrogen atmosphere. After the temperature was dropped to room temperature, ethanol was added to precipitate And centrifuged at 7,000 rpm for 10 minutes.

14024-18-1, As the paragraph descriping shows that 14024-18-1 is playing an increasingly important role.

Reference£º
Patent; Korea Atomic Energy Research Institute; Park, Jung Chan; Jung, Myung Hwan; (9 pag.)KR2016/82202; (2016); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of Ferrocenemethanol

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Ferrocenemethanol,1273-86-5,Molecular formula: C11H3FeO,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: 1.1 mmol of triethylamine was added to a stirred mixture of 1.0 mmol of metallocene alcohol (7, 8, 12) or 0.45 mmol of ferrocene diol (10, 11) and 1.0 mmol of 4,5-dichloroisothiazole- or 5-arylisoxazole-3-carbonyl chloride in 50 mL of diethyl ether at 20-23C. The reaction mixture was stirred at that temperature during 24 h. The precipitated triethylamine hydrochloride was filtered off and washed with diethyl ether (5 ¡Á 10 mL). The filtrate was washed with 10 % aqueous NaCl and 5 % aqueous NaHCO3. The solvent was removed, and the residue was recrystallized from a benzene-hexane (2 : 1) mixture (14, 15, 19, and 20) or from hexane (16,17, 21, and 22). 3,4,4-Trichloro-1-cymantrenylbut-3-en-1-yl 4,5-dichloroisothiazole-3-carboxylate 18 was obtained as a viscous oil and was used without further purification.

With the synthetic route has been constantly updated, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Potkin; Dikusar; Kletskov; Petkevich; Semenova; Kolesnik; Zvereva; Zhukovskaya; Rosentsveig; Levkovskaya; Zolotar; Russian Journal of General Chemistry; vol. 86; 2; (2016); p. 338 – 343; Zh. Obshch. Khim.; vol. 86; 2; (2016); p. 338 – 343,6;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Vinylferrocene

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Name is Vinylferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1271-51-8, its synthesis route is as follows.,1271-51-8

General procedure: In an Schlenk tube under argon one of the following central coresC1, or C2 was mixed with 5percent palladium (II) acetate, Pd(OAc)2, 10percentTris(o-tolyl)phosphine, P(o-tol)3, and vinyl ferrocene, 1-Fc, in triethylamine/THF, 15 mL/15 mL. The resulting mixture was stirred and refluxedovernight. After removing the solvent under reduced pressure,the oil obtained was washed with distillated water and extracted inCH2Cl2 three times and dried over MgSO4. The extract was concentratedto dryness and purified by column chromatography (silica gel60) using hexane/CH2Cl2 2:1 (V/V) mixtures as eluent. The correspondingcompounds were isolated after removing the solvent in a rotaryevaporator. Compound 1. 1-Fc (187 mg, 8.84 mmol), C1 (150 mg,0.253 mmol), Pd(OAc)2 (2.8 mg, 0.0126 mmol), P(o-tol)3 (7.7 mg,0.0253 mmol), triethylamine/THF, 15 mL/15 mL. Yield 49.5percent. IR wavenumber(KBr): =1713 cm?1 (eC]O), 1590 cm?1 (eC]Ce). 1HNMR (CDCl3, 400 MHz): delta=4.10 (15H, pst, C5H5), 4.27 (6H,pst?C5H4), 4.44 (6H, s, ?C5H4), 6.68 (3H, d, J=16.0 Hz, ]CH), 6.89(3H, d, J=16.0 Hz, ]CH), 7.31 (6H, d, J=8.2 Hz, Harom), 7.50 (6H, d,J=8.4 Hz, Harom). 13C NMR (100.6 MHz, CDCl3): delta=67.05, 69.25,69.66, 82.76, 124.74, 126.48, 128.53, 128.60, 128.91, 131.70, 139.04.Analysis calculated for C57H45O3Fe3N3: C, 69.3; H, 4.59; N, 4.26.Found: C, 68.61; H, 4.12; N, 4.32. MP: 199 ¡ãC – 200 ¡ãC.

With the complex challenges of chemical substances, we look forward to future research findings about Vinylferrocene

Reference£º
Article; Santos, Juan C.; Madrid-Moline, Franco; Cisternas, Carlos A.; Paul, Frederic; Escobar, Carlos A.; Jara-Ulloa, Paola; Trujillo, Alexander; Inorganica Chimica Acta; vol. 486; (2019); p. 95 – 100;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Ferrocenemethanol

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO168,mainly used in chemical industry, its synthesis route is as follows.,1273-86-5

General procedure: To a mixture of 1.0 mmol of ferrocenylcarbinol and 1.0 mmol of the corresponding heterocycle in 1.0 ml of methylene dichloride, 0.18 ml of 45 % aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5 min then Et2O (15 ml), the same amount of cold water, and 5-10 mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture the organic solution was separated, washed with cold water (3¡Á15 ml), the solvent was removed and the residue was dried over CaCl2. All types of products (pyrrolidine as well as imidazolidine and thiazolidine derivatives) were equally purified, namely by column chromatography (silica, eluent hexane EtOAc 3:1), and solids obtained after chromatography were crystalized from ethanol.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenemethanol,belong iron-catalyst compound

Reference£º
Article; Rogatkina, Elena Yu.; Ivanova, Anna S.; Rodionov, Alexey N.; Peregudov, Alexander S.; Korlyukov, Alexander A.; Volodin, Alexander D.; Belousov, Yury A.; Simenel, Alexander A.; Arkivoc; vol. 2018; 5; (2018); p. 272 – 282;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-55-2

1271-55-2, 1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-55-2,Acetylferrocene,as a common compound, the synthetic route is as follows.

To a solution of 172 mg KOH (3.07 mmol) in 10 cm3 of EtOH/H2O (1:1) at r.t., 1 g of acetylferrocene(4.38 mmol) was added, followed by dropwise addition of 0.45 cm3 benzaldehyde (4.38 mmol). The thus prepared darkviolet solution was stirred at r.t. for 3 days. Then the reaction mixture was extracted with CH2Cl2(3 ¡Á 10 cm3). The collected organic layers were dried over Na2SO4 and filtered,and the resulting solution was evaporated under reduced pressure to afford the crude product. Isolated enone 9 was characterized and used in the subsequent reaction without further purification. Dark-red crystalline solid (1.28 g, yield:93%); m.p.: 112-118 C; 1H NMR (600 MHz, CDCl3):delta = 7.81 (d, J = 15.7 Hz, 1H), 7.68-7.63 (m, 2H), 7.45-7.39(m, 3H), 7.14 (d, J = 15.6 Hz, 1H), 4.92-4.91 (m, 2H),4.61-4.57 (m, 2H), 4.21 (s, 5H) ppm; 13C NMR (150 MHz,CDCl3):delta = 192.8, 140.8, 135.1, 130.1, 128.9, 122.9, 80.6,72.7, 70.1, 69.7, 69.7 ppm; IR (neat): = 1648 (s, C=O),1595 (m, C=C), 1456 (m, C-H), 1376 (m, C-H), 1280 (w,C-H), 1079 (m, C-H), 993 (w, C-H), 821 (m, C-H), 757(m, C-H), 687 (m, C-H), 544 (w, C-H), 499 (s, C-H), 480 (s, C-H) cm-1; HRMS (ESI): m/z found 317.0621, calcd forC19H17FeO+([M + H+]) 317.0629.

1271-55-2, 1271-55-2 Acetylferrocene 79159, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Mravec, Bernard; Plevova, Kristina; ?ebesta, Radovan; Monatshefte fur Chemie; vol. 150; 2; (2019); p. 295 – 302;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion