The important role of 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: To a stirred solution of KOH (12.0 equiv.)in absolute EtOH (100 mL) cooled to 0 C in an ice-bath were added dropwise a solution of thecorresponding acetophenone (1.0 equiv.) and aldehyde (1.0 equiv.) in EtOH (20 mL). The reactionmixture was stirred at 0 C for 1 h and then at room temperature for 72 h under a nitrogen atmosphereor until TLC analysis indicated complete consumption of starting material. The resulting mixture wasthen poured into ice-water (100 mL) and acidified to pH 3-4 with 3 M HCl. The aqueous solution wasextracted with CHCl3 (3 100 mL) and the combined organic layer was washed with satd NaHCO3(2 100 mL), brine (2 100 mL), dried over anhydrous MgSO4, filtered and the solvent removedunder reduced pressure. The crude residue was purified by flash column chromatography over silicaand/or recrystallized from MeOH or absolute EtOH to afford the corresponding chalcones.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Sum, Tze Han; Sum, Tze Jing; Galloway, Warren R. J. D.; Collins, Suil; Twigg, David G.; Hollfelder, Florian; Spring, David R.; Molecules; vol. 21; 9; (2016);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

1,1′-Dibromoferrocene (5.1 g,14.8 mmol) was dissolved in 50 mL of thf and cooled to 100 C. nBuLi (6 mL, 14.8 mmol) was slowly added and the reaction mixture left to stir at this temperature for 45 min. Dry [ZnCl2*2thf] (4.2 g, 15.0 mmol) was added in a single portion and the resulting preparation was kept at 0 C for 30 min. Afterward, 2,5-dibromothiophene (0.83 mL, 6.45 mmol) and [Pd(CH2CMe2PtBu2)(mu-Cl)]2 (0.025 g, 36.4 mmol) were added to the solution. The reaction mixture was heated to 55 C and stirred for 36 h at this temperature. After cooling to ambient temperature, the crude product was adsorbed on alumina and purified by column chromatography on alumina, using an n-hexane/toluene mixture of ratio 4:1 (v:v) as eluent. Yield 1.60 g (43%), dark orange solid. Anal.Calcd. for C24H18Br2Fe2S (609.98): C:47.24%; H:2.98%; Found:C:47.16%; H: 2.99%. Mp: 220 C.

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

Reference£º
Article; Van Der Westhuizen, Belinda; Matthaeus Speck; Korb, Marcus; Bezuidenhout, Daniela I.; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 772; (2014); p. 18 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1293-65-8

With the complex challenges of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Example L; Preparation of (RC,SFC,SP)-1 -[2-(1 -dimethylaminoethyl)ferrocen-1 -yl]phenylphosphino-1 ‘-bromoferrocenes of the formula (A1) [Ph = phenyl; Me = methyl]; a) Preparation of i -phenylchlorophosphine-i ‘-bromoferrocene (X1); To a solution of 8 g (23.2 mmol) of 1 ,1’-dibromoferrocene in 30 ml of tetrahydrofuran (THF) are added dropwise, at a temperature of < -300C, 14.5 ml (23.2 mmol) of n-butyllithium (n-BuLi) (1.6 M in hexane). The mixture is stirred further at this temperature for 30 minutes. It is then cooled to -78C, and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at a sufficiently slow rate that the temperature does not rise above -600C. After stirring at -78C for a further 10 minutes, the temperature is allowed to rise to room temperature and stirring is continued for another hour. This affords a suspension of the monochlorophosphine X1. With the complex challenges of chemical substances, we look forward to future research findings about 1,1'-Dibromoferrocene Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2008/77917; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenecarboxaldehyde, cas is 12093-10-6 its synthesis route is as follows.,12093-10-6

To a solution of ferrocenecarboxaldehyde (2) (4.28 g, 20 mmol) in acetone (100 mL) was added 2 N aq. NaOH (2 mL). The mixture was stirred at room temperature. After complete reaction (TLC analysis), the mixture was diluted with water and the precipitation was filtered to afford the crude product, which were purified by column chromatography using silica gel. 84% yield; brown solid, mp 125-127 C; 1H NMR (600 MHz, CDCl3): delta 7.42 (d, J = 16.0 Hz, 1H, CH=CH), 6.34 (d, J = 16.0 Hz, 1H, CH=CH), 4.50 (s, 2H, ferrocene-H), 4.44 (s, 2H, ferrocene-H), 4.15 (s, 5H, ferrocene-H), 2.29 (s, 3H, Me-H). MS (ESI): 255.1 (C14H14FeO, [M+H]+). Anal. Calcd for C14H14FeO: C, 66.17; H, 5.55; O, 6.30. Found: C, 66.23; H, 5.49; O, 6.36%.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Guo, Ying; Wang, Si-Qi; Ding, Zong-Qing; Zhou, Jia; Ruan, Ban-Feng; Journal of Organometallic Chemistry; vol. 851; (2017); p. 150 – 159;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 102-54-5

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocene

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocene, cas is 102-54-5 its synthesis route is as follows.,102-54-5

Ferrocenecarboxaldehyde was prepared from ferrocene according to the literature.10 Phosphorus oxychloride (50mL, 536mmol) was added dropwise to the dimethylformamide (39.0g, 536mmol) at 0C and the resulting mixture was stirred for 30min at this temperature under a nitrogen atmosphere. Next ferrocene (50.0g, 268mmol) in dry chloroform (250mL) was added dropwise to the mixture for 30min at 0C. After completion of the addition, the reaction mixture was kept stirring for 28h with heating at 55-60C on an oil bath, taking care that the temperature did not exceed 60C. The reaction mixture was then cooled to room temperature and neutralized carefully with an aqueous saturated Na2CO3 solution and then extracted repeatedly with the dichloromethane. The combined organic layer was dried over anhydrous Na2SO4, filtered and the solvent was evaporated under reduced pressure. The residue was purified through silica gel column chromatography using hexane/ ethyl acetate mixture (95:05) as eluent to give ferrocenecarboxaldehyde 1 in 55% yield (31.7g) as a reddish brown solid. (mp: 122C, lit.10 123C); IR (KBr, cm-1): 3093, 2837, 2760, 1683, 1447; 1H NMR (400MHz, CDCl3): deltaH 9.95 (s, 1H); 4.80-4.60 (m, 4H), 4.27 (s, 5H); 13C NMR (100MHz, CDCl3): deltaC 193.63, 79.49, 73.33, 69.78; HRMS-ESI (m/z): [M+H]+ Found 215.0157 and calculated 215.0159 for C11H11FeO.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocene

Reference£º
Article; Achari, Kamsali Murali Mohan; Ramanathan, Chinnasamy Ramaraj; Tetrahedron Asymmetry; vol. 28; 6; (2017); p. 830 – 836;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: O-amino amides 1a-e (1 equiv.) and carbonyl compounds 2a-o (1.2 equiv.) were microwave irradiated (standard mode) in the presence of Phosphotungstic acid/HPW (50 % w/w) at 200 W for 3 min. After the completion of the reaction (Monitored by TLC), HPW was filtered off using celite bed/Silica bed. The crude product was purified on silica gel a column chromatography to afford the corresponding spiro and cyclic quinazolinones 3a-3n, 4a-4h, and 5a, 5b in very good yields except compounds 6a and 7a were obtained in poor yields (Eluent: n-Hexane /EtOAc). All the compounds 3a-3n, 4a-4h, 5a-b, 6a and 7a were thoroughly characterized by 1H NMR, 13CNMR, FTIR and HRMS.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Novanna, Motakatla; Kannadasan, Sathananthan; Shanmugam, Ponnusamy; Tetrahedron Letters; vol. 60; 2; (2019); p. 201 – 206;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-82-1

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

A solution of 300 mg (1.49 mmol) of the amine ferrocene obtained in Preparation Example 1,380 mg (1.64 mmol) of 4-bromobiphenyl (4-bromobiphenyl)17 mg (0.075 mmol) of palladium acetate [Pd (OAc) 2]67 mg (0.12 mmol) of 1,1′-bis (diphenylphosphino) ferrocene (dppf) and 577 mg (6 mmol) of sodium tert-butoxide (NaOtBu)And with 5 mL of toluene as solvent,The reaction was carried out at 90 C for 72 hours,And then into the pure water,Extracted with 60 mL of ether 5 times,The resulting organic layer was washed with anhydrous magnesium sulfate and the solvent was removed,Purification by column chromatography [3: 2 (v / v) n-hexane and ethyl acetate]That is, the orange compound BPAFc is obtained(Yield 68%The structure is shown in Reaction Scheme II).

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Patent; Zheng, Jianhong; Lai, Zhenchang; Zhang, Yuwei; Liao, Chunyi; Huang, Minjie; (31 pag.)CN106317129; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 102-54-5

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocene

Name is Ferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 102-54-5, its synthesis route is as follows.,102-54-5

A 250 mL round bottom reaction flask was charged sequentially with 1.46 g of aluminum trichloride (11 mmol) and 20 mL of dichloroethane,Under ice-water cooling, 0.8 mL of acetyl chloride (11 mmol)Continue stirring until almost dissolved aluminum trichloride.In another 250 mL round bottom reaction flask,A solution of 1.86 g (ie 10 mmol) of ferrocene in dichloroethane was added,Under ice-cooling, the acetyl chloride-aluminum trichloride complex solution prepared above was dropped,Stirring to complete the reaction at room temperature (monitored by thin layer chromatography) takes about 2 hours.The reaction was poured into ice water,Separate the organic phase,Followed by water,5% sodium carbonate solution and water,Drying over anhydrous sodium sulfate.The solvent was removed under reduced pressure,A red oil was obtained,Recrystallization to give orange crystals of acetyl ferrocene,Yield 80%.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocene

Reference£º
Patent; Inner Mongolia University; Zhang Hao; Ling Li; Hu Jianfeng; Huo Yanhong; (11 pag.)CN107226829; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1293-65-8

With the complex challenges of chemical substances, we look forward to future research findings about 1,1′-Dibromoferrocene

Name is 1,1′-Dibromoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Preparation of i-phenylchlorophosphine-i ‘-bromoferrocene (X1 )14.5 ml (23.2 mmol) of n-BuLi (1.6 M in hexane) are added dropwise to a solution of 8 g (23.2 mmol) of 1 ,1 ‘-dibromoferrocene in 30 ml of THF at a temperature of < -30 C. The mixture is stirred for a further 30 minutes at this temperature. It is then cooled to -78C and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at such a rate that the temperature does not exceed -60C. After stirring the mixture at -78C for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. This gives a suspension of the monochlorophosphine X1.; Preparation of i-dicyclohexylphosphino-i '-bromoferrocene of the formula (A2)120 ml (0.3 mol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 103 g (0.3 mol) of 1 ,1 '-dibromoferrocene in 300 ml of THF at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. It is then cooled to -50C and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are added dropwise at such a rate that the temperature does not exceed -45C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. After addition of 150 ml of water, the reaction mixture is shaken with hexane. The organic phases are dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product A2 is obtained in a yield of 84% (yellow solid). 1H NMR (300 MHz, C6D6): delta 1.20-2.11 (m, 22H), 3.97 (m, 2H), 4.23 (m, 2H), 4.26 (m, 2H), 4.41 (m, 2H). 31P NMR (121.5 MHz, C6D6): delta -8.3 (s).; Example B17: Preparation of the compound (Rc,SFc,SP)-1-[2-(1-dimethylaminoethyl)ferrocen- i-yllcyclohexylphosphino-i '-bis-beta.S-d^trifluoromethylJphenyllphosphinoferrocene (B17):4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 '-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours to give a suspension of 1-bromo-1 '-lithioferrocene X5.In a second reaction vessel, 7.7 ml (10 mmol) of S-BuLi (1.3 M in cyclohexane) are added dropwise to a solution of 2.57 g (10 mmol) of (R)-1-dimethylamino-1-ferrocenylethane in 15 ml of TBME at <-10C. After stirring the mixture at the same temperature for 10 minutes, the temperature is allowed to rise to 0 and the mixture is stirred for another 1.5 hours. The reaction mixture is then cooled to -78C and 1.51 ml (10 mmol) of dichlorocyclohexyl- phosphine are added. Further stirring at -78C for 30 minutes and, after removal of cooling, at room temperature for another one hour gives a suspension of the chlorophosphine X4 which is subsequently added at a temperature of <-10C to the suspension of 1-bromo-1 '-lithio- ferrocene X5. The cooling is then removed and the mixture is stirred at room temperature for a further 1.5 hours. After renewed cooling to <-50C, 4 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. After the addition, the temperature is allowed to rise to 0C and the mixture is stirred for a further 30 minutes. It is then cooled to -20C and 4.63 g (10 mmol) of bis[3,5-di(trifluoromethyl)phenyl]chlorophosphine are added. The cooling is subsequently removed and the mixture is stirred at room temperature for another 1.5 hours. The reaction mixture is admixed with 1 N NaOH and extracted. The organic phase is dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is subsequently heated at 150C for one hour. Chromatographic purification (silica gel 60; eluent = hexane/ethyl acetate 8:1 ) gives the compound B17 as a yellow solid (yield: 66%). 1H NMR (300 MHz, C6D6): delta 1.25 (d, 3H, J = 6.7 Hz), 1.00-2.29 (m, 1 1 H), 2.20 (s, 6H), 3.78 (m, 1 H), 4.02 (m, 1 H), 4.04 (s, 5H), 4.09 (m, 1 H), 4.14 (m, 1 H), 4.17 (m, 1 H), 4.21 (m, 1 H), 4.40 (m, 2H), 4.60 (m, 1 H), 7.80 (d, 2H, J = 6.8 Hz), 8.00 (d, 4H, J = 6.0 Hz). 31P NMR (121.5 MHz, C6D6): delta -27.1 (s); -14.1 (s).; Example B18: Reaction schemeX24 ml (10 mmol) of n-BuLi (2.5 M in hexane) are added dropwise to a solution of 3.44 g (10 mmol) of 1 ,1 ‘-dibromoferrocene in 10 ml of tetrahydrofuran (THF) at a temperature of < -30C. The mixture is stirred at this temperature for a further 1.5 hours. 2.21 ml (10 mmol) of dicyclohexylphosphine chloride are then added dropwise at such a rate that the temperature does not exceed -20C. After stirring the mixture for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another one hour. It is cooled back down to 30C and 4.4 ml (11 mmol) of n-BuLi (2.5 M in hexane) are added dropwise. The mixture is subsequently stirred at -10C for 30 minutes. The reaction mixture is the... With the complex challenges of chemical substances, we look forward to future research findings about 1,1'-Dibromoferrocene Reference£º
Patent; SOLVIAS AG; WO2007/116081; (2007); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-82-1

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

The aminoferrocene compound (300 mg, 1.5 mmol) obtained in Preparation Example 1,4?-bromo-N,N-diphenylbiphenyl-4-amine (1.8 g, 4.5 mmol), palladium acetate (Pd(OAc)2, 17 mg, 0.075 mmol), a solution of tributylphosphine in n-hexane (0.1 ml, 10 wt %), and sodium tert-butoxide (NaOtBu, 1.13 g, 11.8 mmol) were mixed in toluene (6 ml, as a solvent). A reaction was conducted at 130 C. for 72 hours. Pd(dba)2 was filtered using diatomaceous earth and silica gel. The reaction was washed using ethyl acetate and the solvent was removed. Purification was conducted by column chromatography (eluent: n-hexane/ethyl acetate in a gradient from 4/1 to 3/2 (v/v)) to obtain compound DPABPAFc (yield: 50%). The structure of compound DPABPAFc is shown in scheme III. Preparation of Compound Fc02: (0046) Compound Fc02 was prepared by a process similar to that for preparing compound DPABPAFc except that the amount of 4?-bromo-N,N-diphenylbiphenyl-4-amine was 7.90 g (19.7 mmol) and that sublimation (two times) was conducted after column chromatography. Compound Fc02 was obtained in the formed of a red solid (yield: 40%). (0047) Analysis for compound DPABPAFc: 1H NMR (400 MHz. CDCl3): delta 7.42 (t, J=8.0 Hz, 4H), 7.24 (t, J=8.0 Hz, 4H), 7.11 (d, J=8.0 Hz, 4H), 7.00 (t, J=7.2 Hz, 2H), 6.92 (d, J=7.6 Hz, 2H), 4.89 (br, 1H), 4.29 (s, 2H), 4.21 (s, 5H), 4.08 (s, 2H); 13C NMR (100 MHz. CDCl3): delta 147.8, 146.2, 141.9, 135.3, 131.2, 129.2, 127.2, 127.0, 124.4, 124.1, 122.6, 115.1, 69.0, 64.7, and 61.8; HRMS (EI+, m/z) calculated for C34H28N2Fe: 520.1602. found: 520.1599. (0048) Analysis for compound Fc02: 1H NMR (400 MHz. CDCl3): delta 7.52 (d, J=8.4 Hz, 4H), 7.46 (d, J=8.8 Hz, 4H), 7.33 (d, J=8.4 Hz, 4H), 7.27-7.23 (m, 8H), 7.11 (d, J=8.4 Hz, 8H), 7.02 (d, J=8.0 Hz, 4H), 4.17 (s, 5H), 4.11 (s, 2H), 4.04 (s, 2H); 13C NMR (100 MHz. CDCl3): delta 147.7, 147.7, 146.5, 141.9, 135.0, 129.2, 127.5, 127.4, 127.2, 124.5, 124.3, 124.2, 124.0, 122.8, 122.7, 118.0, 69.0, 64.0, and 60.4; HRMS (FAB+, m/z) calculated for C58H46N3Fe: 840.3041. found: 840.3044.

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Patent; NATIONAL TSING HUA UNIVERSITY; Cheng, Chien-Hong; Lai, Cheng-Chang; Chang, Yu-Wei; Liao, Chuang-Yi; Huang, Min-Jie; (16 pag.)US9356244; (2016); B1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion