New learning discoveries about 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.

Example 1 – Preparation of ferrocene modified phospholipid (3)[0064] Ferrocene modified phospholipid (FC-DSP) was prepared in the following manner: triethylamine (0.077 mmol, 0.01 ml_, 1.4 eq) and N,N-dicyclohexylcarbodiimide (0.077 mmol, 15.9 mg, 1.4 eq) were added to a solution that contained 1 ,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (0.055 mmol, 35 mg, 1.0 eq) and ferroceneacetic acid (0.077 mmol, 18.8 mg, 1.4 eq) in anhydrous DCM (1.5 ml_). The reaction was stirred overnight, until N MR indicated conversion to the coupling was completed. The solution was concentrated under vacuum and then was purified on iatrobeads gel chromatography ( 10% MeOH : DCM). A dark-brown oil (29.4 mg, 0.0341 mmol) was obtained (62% yield). H N MR (300 MHz, CDCI3) delta 7.04 (br, 1 H), 5.23 (br, 1 H), 4.37 (br, 1 H), 4.22 (br, 2H), 4.12 (br, 5H), 3.94 (br, 2H), 3.49 (br, 4H), 3.28 (br, 2H), 3.05 (br, 4H), 2.28 (br, 4H), 1.58 (br, 4H), 1.25 (br, 40H), 0.87 (t, J = 6.5 Hz, 6H).3P NMR (122 MHz, CDCI3) delta 0.15 (s).3C N MR (75 MHz, CDCI3) delta 173.60 (s), 173.21 (s), 70.56 (s), 69.26 (s), 68.92 (s), 68.14 (s), 62.82 (s), 45.87 (s), 34.44 (s), 34.25 (s), 32.05 (s), 29.80 (s), 29.65 (s), 29.49 (s), 29.29 (s), 25.02 (s), 22.81 (s), 14.24 (s), 8.73 (s). HRMS (ESI): Calc. for C45H76FeN09P (M+H)+: 862.4680; found : 862.4624., 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

Reference£º
Patent; THE ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING/MCGILL UNIVERSITY; TRANSFERT PLUS SOCIETE EN COMMANDITE; MAUZEROLL, Janine; NOYHOUZER, Tomer Aharon; SNOWDEN, Michael Edward; DAUPHIN DUCHARME, Philippe; MAZURKIEWICZ, Stephani; L’HOMME, Chloe; DESJARDINS, Samuel; CANESI, Sylvain; (84 pag.)WO2016/115626; (2016); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.

To a solution of 1,1?-dibromo ferrocene (1, 2.58 g, 7.50 mmol, 1.0 equiv) dissolved in tetrahydrofuran (40 mL) a 2.5 M solution of n-butyl lithium in hexane (2.85 mL, 7.13 mmol, 0.95 equiv) was added dropwise at-70 C. After stirring the reaction solution at this temperature for 1 h, chlorodi-2-(5-methyl)furyl phosphine (2c) (1.71 g, 7.50 mmol) was added in a single portion. The reaction mixture was stirred for 1 h at ambient temperature and was then concentrated in oil pump vacuum. The resulting residue was purified by column chromatography on alumina using a mixture of hexane-diethyl ether (ratio 5:1; v/v). After drying in oil pump vacuum the title compound was obtained as a pale yellow solid. Please, note that 3c could not be completely separated from P(Fc)(2-(5-Me)C4H2O)2 formed as by-product and hence was used without additional purification in further reactions. Anal. Calcd. for C20H18BrFeO2P (457.08 g/mol): C, 52.55; H, 3.97. Found: C, 54.22*; H 3.92*. Mp.: 77 C. IR (NaCl, /cm-1): 1019 (s, C-O-C), 1410/1446/1496/1593 (w, C=C), 2920/2951 (w, C-H), 3109 (w, =C-H). 1H NMR (500.30MHz, CDCl3, delta): 2.36 (s, 6H, CH3), 3.99 (pt, 3/4JHH=1.9Hz, 2H, Hbeta/C5H4Br), 4.31 (pt, 3/4JHH=1.9Hz, 2H, Halpha/C5H4Br), 4.38 (dpt, 4JPH=0.6Hz, 3/4JHH=2.0Hz, 2H, Hbeta/C5H4P), 4.47 (dpt, 3JPH=1.8Hz, 3/4JHH=2.0Hz, 2H, Halpha/C5H4P), 5.99 (ddq, 4JPH=1.4Hz, 3JHH=3.1Hz, 4JHH=1.0Hz, 2H, H4/5-MeC4H2O), 6.59 (ddq, 3JPH=1.9Hz, 3JHH=3.1Hz, 5JHH=0.2Hz, 2H, H3/5-MeC4H2O). 13C{1H} NMR (125.81MHz, CDCl3, delta): 14.1 (s, CH3), 68.5 (s, Cbeta/C5H4Br), 71.2 (s, Calpha/C5H4Br), 74.0 (d, 3JCP=5Hz, Cbeta/C5H4P), 75.5 (d, 1JCP=3Hz, Ci/C5H4P), 75.8 (d, 2JCP=18Hz, Calpha/C5H4P), 77.9 (s, Ci/C5H4Br), 107.0 (d, 3JCP=6Hz, C4/5-MeC4H2O), 121.1 (d, 2JCP=22Hz, C3/5-MeC4H2O), 150.2 (d, 1JCP=4Hz, C2/5-MeC4H2O), 156.7 (d, 3JCP=3Hz, C5/5-MeC4H2O). 31P{1H} NMR (202.5MHz, CDCl3, delta):-66.7 (s). *) The sample included 15% 1-di(2-(5-methylfuryl)phosphanyl)ferrocene (4b) which could not be separated from the title compound, 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Schreiner, Claus; Jeschke, Janine; Milde, Bianca; Schaarschmidt, Dieter; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 785; (2015); p. 32 – 43;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-82-1

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

General procedure: The organometallic compounds derived from 5-nitrothiophene were prepared following the same procedure as of their 5-nitrofurane analogues [14]. Equimolar amounts of the amino compound and 5-nitro-2-thiophenecarboxaldehyde were dissolved in anhydrous benzene (20mL) and refluxed for 1h under a nitrogen atmosphere. After, the solvent was removed under vacuum and the colored solids obtained were purified by crystallization from CH2Cl2/hexane (1:5) at -18C.

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Arancibia, Rodrigo; Klahn, A. Hugo; Buono-Core, Gonzalo E.; Contreras, Daniel; Barriga, German; Olea-Azar, Claudio; Lapier, Michel; Maya, Juan D.; Ibanez, Andres; Garland, Maria Teresa; Journal of Organometallic Chemistry; vol. 743; (2013); p. 49 – 54;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1287-16-7

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

It is a common heterocyclic compound, the iron-catalyst compound, Ferrocenylacetic acid, cas is 1287-16-7 its synthesis route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Aminoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1273-82-1,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Aminoferrocene, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

Aminoferrocene (0.40 g, 1.98 mmol) and acetaldehyde (0.1 mL, 1.98 mmol) were dissolved on methanol (10 mL) and refluxed for 2 h. Then, Na[B(CN)H3] (0.12 g, 1.98 mmol) dissolved in MeOH (10 mL) was slowly added. The mixture obtained was acidified with HCl (2 mL, 1 M in water) and left stirring for 30 min. Afterwards, the solvent was removed in vacuum (0.01 mbar) and the rest was mixed with triphosgene (0.59 g, 1.98 mmol) in toluene (25 mL). The suspension obtained was refluxed for 1 h, cooled down to 22C and then mixed with solution of 4-(hydroxymethyl)phenylboronic acid pinacol ester (0.46 g, 1.98 mmol) in toluene (10 mL). The resulting solution was heated to 120C and stirred at these conditions for 6 h. Then, the solvent was removed in vacuum (0.01 mbar) and the crude product was purified by column chromatography on silica gel using hexane containing 5% of acetone as eluent. Yield 0.20 g (20%). Rf= 0.5 (silica, eluent – hexane / acetone, 5/1, v/v). 1H NMR (400 MHz, acetone-d6), delta in ppm: 1.27 (t, 3H), 1.33 (s, 12H), 3.77 (q, 2H), 4.00 (s, 2H), 4.13 (s, 5H), 4.53 (m, 2H), 5.22 (s, 2H), 7.46 (d, 1 H), 7.77 (d, 2H). 13C NMR (100.55 MHz, acetone-d6), delta in ppm: 14.4, 25.3, 45.8, 62.8, 65.1, 66.9, 67.5, 69.8, 84.6, 127.8, 128.1, 135.7 (two overlapping peaks), 139.1, 141.2. FAB MS: calculated for C26H32BNO4Fe 489.2, found 489.2 m/z. C, H, N analysis: calculated for C26H32BNO4Fe – C 63.8%; H 6.6%; N 2.9%; found – C 63.8%; H 6.8%; N 2.9%. IR spectra (in KBr), wave number in cm-1: 3101, 2973, 1696, 1623.

With the complex challenges of chemical substances, we look forward to future research findings about 1273-82-1,belong iron-catalyst compound

Reference£º
Patent; Ruprecht-Karls-Universitaet Heidelberg; EP2497775; (2012); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of Ferrocenecarboxaldehyde

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Name is Ferrocenecarboxaldehyde, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

General procedure: To a magnetic stirred solution of acylferrocene (10 mmol) in methanol (30 mL) tosylhydrazine (10 mmol) was added. Then the mixture was stirred vigorously at 70 C. TLC analysis was performed until the spot of acylferrocene disappeared. Then the solution was cooled to room temperature, and N-tosylhydrazone precipitated. The precipitate was filtered and washed with petroleum ether (10 mL * 2) to get the pure product.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Article; Liu, Yueqiang; Ma, Xiaowei; Liu, Yan; Liu, Ping; Dai, Bin; Synthetic Communications; vol. 48; 8; (2018); p. 921 – 928;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1,1′-Dibromoferrocene

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is 1,1′-Dibromoferrocene, and cas is 1293-65-8, its synthesis route is as follows.,1293-65-8

Part ( I)Preparation of 1-bromo-l’ -trimethylsilyl ferroceneTo 1, 1 ‘-dibromoferrocene (1Og, 29.08mmol) in dry THF (200ml) cooled to -780C (dry ice/acetone bath) was added n-butyllithium (11.05ml, 27.63mmol, 0.95eq) and the reaction was stirred under N2 for 30 min. Chlorotrimethylsilane (3.7ml, 29.08mmol, leq) was then added dropwise and the solution was then allowed to warm up to room temperature and further stirred for twelve hours resulting in a red solution.The reaction was then quenched with water, and stirred for a further fifteen minutes. The ethereal layer, containing product was separated and the aqueous layer was further extracted several times with diethyl ether. The combined ether fractions were dried over magnesium sulphate and filtered through celite. The ether solvent was removed by rotary evaporator (resulting in red oil) . The product was purified as the initial red band (petrol) by column chromatography. The resulting red oil was finally dried under vacuum: (7.11g, 73 % yield) .

With the complex challenges of chemical substances, we look forward to future research findings about 1293-65-8,belong iron-catalyst compound

Reference£º
Patent; LUCITE INTERNATIONAL UK LIMITED; WO2008/65448; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1273-82-1

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Name is Aminoferrocene, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1273-82-1, its synthesis route is as follows.,1273-82-1

(Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (W(CO)5(E-2)): 402 mg (2.0 mmol) of Fc-NH2 and 1132 mg (2.0 mmol) of W(CO)5(1Et) where dissolved in dryTHF (40 mL). 1595 mg (8.0 mmol) of potassium hexa methyldisilazide(KHMDS) in dry THF (40 mL) were added with in 5.5 h while stirring at room temperature. The reaction was monitored by TLC to check the reaction progress and to stopthe reaction before extensive imine formation occurs. After 8 h,the solvent was removed under reduced pressure and anaqueous saturated NaHCO3 solution (100 mL) was added.The aqueous phase was extracted with dichloromethane(3 ¡Á 100 mL) and the combined organic phases were washed with aqueous saturated NaHCO3 solution (2 ¡Á 100 mL) and brine (2 ¡Á 100 mL). The organic phase was dried over MgSO4. After evaporation of the solvent under reduced pressure, a crudered product was obtained (1.04 mg). Purification by columnchromatography (SiO2; 40 cm ¡Á 5.5 cm; petroleum ether (40/60):CH2Cl2 1:1; Rf (Fc-NH2) = 0.0, Rf (E-3) = 0.5,Rf (W(CO)5(E-2)) = 0.8) yielded 403 mg (0.56 mmol, 28%) of deep red crystalline needles. 1H NMR (CD2Cl2): delta 10.50 (s, 1H,H6), 4.73 (pt, 2H, H8), 4.71 (pt, 2H, H3), 4.62 (pt, 2H, H2),4.37 (s, 5H, H1/10), 4.33 (pt, 2H, H9), 4.32 (s, 5H, H1/10) ppm; 13C NMR (CD2Cl2) delta 259.6 (C5), 204.4 (C12), 199.3(C11,1JWC = 127 Hz), 99.7 (C7), 97.7 (C4), 72.1 (C2), 70.7(C3), 70.6 (C1/10), 70.2 (C1/10), 69.1 (C8), 67.8 (C9) ppm; MS(FD) m/z (int.): 721.0 (100, [M]+); IR (KBr) : 3335 (m, NH),3107 (s, CH), 2058 (vs, CO), 1977 (vs, CO), 1899 (br, CO),1508 (s), 1350 (m), 1238 (m), 1057 (m), 822 (m), 600 (s), 579(m), 480 (m) cm-1; IR (CH2Cl2) : 2060 (vs, CO A1), 1975 (s,CO B1), 1921 (br, CO E, A1), 1503 (m) cm-1; IR (CD2Cl2) :3439 (w, NH(W(CO)5(Z-2))), 3240 (m, NH(W(CO)5(E-2)))cm-1; UV-vis (CH2Cl2) lambdamax (epsilon): 290 sh (15370), 355 (11020),387 (11680), 468 sh (2570 M-1 cm-1) nm; CV (THF, vs FcH/FcH+): E1/2 = -2.38 V (qrev.), Ep,ox = 0.26, 0.48 V, Ep,red =0.17, -0.15, -0.76 V; Anal. calcd for C26H19Fe2NO5W (720.95): C, 43.31; H, 2.66; N, 1.94; found: C, 43.30; H, 2.69;N, 1.91.

With the complex challenges of chemical substances, we look forward to future research findings about Aminoferrocene

Reference£º
Article; Veit, Philipp; Foerster, Christoph; Heinze, Katja; Beilstein Journal of Organic Chemistry; vol. 12; (2016); p. 1322 – 1333;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

The important role of 1287-16-7

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Name is Ferrocenylacetic acid, as a common heterocyclic compound, it belongs to iron-catalyst compound, and cas is 1287-16-7, its synthesis route is as follows.,1287-16-7

ALC A-1 (0.25 mmol) was dissolved in dry dichloromethane (5 mL). To this was added EDCI (2 eq., 0.5 mmol) and 2-ferrocenyl acetic acid (1.1 eq., 0.28 mmol). The reaction was stirred overnight at room temperature. The solvent was removed in vacuo and the resulting white amorphous foam. The resulting crude product was purified by column chromatography with a gradient starting at 10 % of acetone in cyclohexane (0.2% Et3N).

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenylacetic acid

Reference£º
Patent; SYNOVO GMBH; PIETRZIK, Nikolas; BURNET, Michael, W.; BAEUERLEIN, Christiane; EGGERS, Mary; GUSE, Jan-hinrich; HAHN, Ulrike; STRASS, Simon; (0 pag.)WO2018/161039; (2018); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

Example 2: Synthesis of ferrocenyl chalcones 1 a-f General preparation of ferrocenyl chalcones: Ferrocene carboxaldehyde (1 eq) and the appropriate 2-hydroxyacetophenone (1 eq) were dissolved in absolute ethanol (40 mL) in a 100 mL two necked round bottom flask. After stirring the mixture 10 to 15 min. at room temperature, sodium hydroxide (3 eq) was added, and the solution was stirred overnight. The mixture was poured into water (100 mL) and hydrochloric acid (12 M, 15 mL), extracted with dichloromethane (3 x 50 mL), and washed with water. The organic phase was dried over magnesium sulfate, filtered, and the solvent removed by evaporation. The product was purified by silica gel chromatography, using a mixture of petroleum ether/dichloromethane 4:1 as an eluent, and again using HPLC in acetonitrile/water (90:10). After HPLC purification, the acetonitrile was removed under reduced pressure and the aqueous phase extracted with dichloromethane.

With the complex challenges of chemical substances, we look forward to future research findings about Ferrocenecarboxaldehyde

Reference£º
Patent; Centre National de la Recherche Scientifique (CNRS); EP2368895; (2011); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion