Some tips on 1287-16-7

1287-16-7 Ferrocenylacetic acid 73425372, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

1287-16-7 Ferrocenylacetic acid 73425372, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.

General procedure: A 100mL dry, nitrogen purged round bottom flask was charged with the carbonyl compound in dry tetrahydrofuran. Freshly prepared Cp2TiMe2 in toluene was added. The reaction mixture was heated to 80¡ãC for 10h and was monitored by thin layer chromatography. Insoluble precipitate was separated, the solvent evaporated under reduced pressure, and the residue obtained was purified by column chromatography., 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

Reference£º
Article; Singh, Jatinder; Ghosh, Sanjib; Deb, Mayukh; Elias, Anil J.; Journal of Organometallic Chemistry; vol. 818; (2016); p. 85 – 91;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of Aminoferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO337,mainly used in chemical industry, its synthesis route is as follows.,1273-82-1

General procedure: Organometallic sulfonamides were prepared following a modification of the procedure described by Alberto and co-workers [41]. An equimolar amount of pyridine was added at room temperature to a solution containing 50mg of P2 or P3 in 7.0mL of anhydrous CH2Cl2. After 15min, the corresponding sulfonyl chloride derivative was added, and the reaction mixture was heated under reflux for 24h. The resulting solution was dried under vacuum. The crude product was purified using silica gel liquid chromatography and a mixture of CH2Cl2/hexane (4:1) as the eluent. All compounds were recrystallized from an acetone/hexane (1:5) mixture by slow evaporation.

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

Reference£º
Article; Quintana, Cristobal; Silva, Gisella; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Novoa, Nestor; Arancibia, Rodrigo; Polyhedron; vol. 134; (2017); p. 166 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1,1′-Dibromoferrocene

With the synthetic route has been constantly updated, we look forward to future research findings about 1,1′-Dibromoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO444,mainly used in chemical industry, its synthesis route is as follows.,1293-65-8

1 ,1 ‘-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, n-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4-iodophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 16 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals.

With the synthetic route has been constantly updated, we look forward to future research findings about 1,1’-Dibromoferrocene,belong iron-catalyst compound

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1293-65-8

With the synthetic route has been constantly updated, we look forward to future research findings about 1,1′-Dibromoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,1,1′-Dibromoferrocene,1293-65-8,Molecular formula: C10Br2Fe,mainly used in chemical industry, its synthesis route is as follows.,1293-65-8

To a solution of 1,1?-dibromo ferrocene (1, 2.58 g, 7.50 mmol, 1.0 equiv) dissolved in tetrahydrofuran (40 mL) a 2.5 M solution of n-butyl lithium in hexane (2.85 mL, 7.13 mmol, 0.95 equiv) was added dropwise at-70 C. After stirring the reaction solution at this temperature for 1 h, chlorodi-2-(5-methyl)furyl phosphine (2c) (1.71 g, 7.50 mmol) was added in a single portion. The reaction mixture was stirred for 1 h at ambient temperature and was then concentrated in oil pump vacuum. The resulting residue was purified by column chromatography on alumina using a mixture of hexane-diethyl ether (ratio 5:1; v/v). After drying in oil pump vacuum the title compound was obtained as a pale yellow solid. Please, note that 3c could not be completely separated from P(Fc)(2-(5-Me)C4H2O)2 formed as by-product and hence was used without additional purification in further reactions. Anal. Calcd. for C20H18BrFeO2P (457.08 g/mol): C, 52.55; H, 3.97. Found: C, 54.22*; H 3.92*. Mp.: 77 C. IR (NaCl, /cm-1): 1019 (s, C-O-C), 1410/1446/1496/1593 (w, C=C), 2920/2951 (w, C-H), 3109 (w, =C-H). 1H NMR (500.30MHz, CDCl3, delta): 2.36 (s, 6H, CH3), 3.99 (pt, 3/4JHH=1.9Hz, 2H, Hbeta/C5H4Br), 4.31 (pt, 3/4JHH=1.9Hz, 2H, Halpha/C5H4Br), 4.38 (dpt, 4JPH=0.6Hz, 3/4JHH=2.0Hz, 2H, Hbeta/C5H4P), 4.47 (dpt, 3JPH=1.8Hz, 3/4JHH=2.0Hz, 2H, Halpha/C5H4P), 5.99 (ddq, 4JPH=1.4Hz, 3JHH=3.1Hz, 4JHH=1.0Hz, 2H, H4/5-MeC4H2O), 6.59 (ddq, 3JPH=1.9Hz, 3JHH=3.1Hz, 5JHH=0.2Hz, 2H, H3/5-MeC4H2O). 13C{1H} NMR (125.81MHz, CDCl3, delta): 14.1 (s, CH3), 68.5 (s, Cbeta/C5H4Br), 71.2 (s, Calpha/C5H4Br), 74.0 (d, 3JCP=5Hz, Cbeta/C5H4P), 75.5 (d, 1JCP=3Hz, Ci/C5H4P), 75.8 (d, 2JCP=18Hz, Calpha/C5H4P), 77.9 (s, Ci/C5H4Br), 107.0 (d, 3JCP=6Hz, C4/5-MeC4H2O), 121.1 (d, 2JCP=22Hz, C3/5-MeC4H2O), 150.2 (d, 1JCP=4Hz, C2/5-MeC4H2O), 156.7 (d, 3JCP=3Hz, C5/5-MeC4H2O). 31P{1H} NMR (202.5MHz, CDCl3, delta):-66.7 (s). *) The sample included 15% 1-di(2-(5-methylfuryl)phosphanyl)ferrocene (4b) which could not be separated from the title compound

With the synthetic route has been constantly updated, we look forward to future research findings about 1,1′-Dibromoferrocene,belong iron-catalyst compound

Reference£º
Article; Schreiner, Claus; Jeschke, Janine; Milde, Bianca; Schaarschmidt, Dieter; Lang, Heinrich; Journal of Organometallic Chemistry; vol. 785; (2015); p. 32 – 43;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1273-82-1

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

As a common heterocyclic compound, it belong iron-catalyst compound,Aminoferrocene,1273-82-1,Molecular formula: C10H11FeN,mainly used in chemical industry, its synthesis route is as follows.,1273-82-1

General procedure: 1a was synthesized by modifying the reported procedure [44]. Catalytic amount of p-toluene sulfonic acid (20mg, 0.10mmol) was added to a mixture of pyrrole-2-carbaldehye (380mg, 4.0mmol) and 1-amino-2-methoxybenzene (490mg, 4.0mmol) in methanol (10mL) under stirring condition in nitrogen atmosphere. The resulting mixture was heated to reflux for 20h, and then cooled to room temperature. After removal of volatiles under reduced pressure, the residue was mixed with THF and filtered through a pad of celite. The resulting solution was concentrated to give a brown solid, which was further purified by re-dissolved in THF/ether (1:4). The solution was kept at -18C for overnight, and brown crystalline solid was collected by filtration. The solid was washed with ether and further dried under vacuum to obtain 1a. Yield 270mg (68%). m.p. 235-236C. 1H NMR (400MHz, CDCl3) delta 10.07 (s, 1H, NH), 8.30 (s, 1H, CH=N), 7.20 (dt, J=7.6, 1.6Hz, 1H, Ar-H), 7.05 (d, J=1.6Hz, 1H, Ar-H), 7.01 (d, J=7.6Hz, 1H, Ar-H), 6.98 (d, J=7.6Hz, 1H, Ar-H), 6.88 (d, J=1.2Hz, 1H, Py-H), 6.70 (dd, J=1.2, 3.6Hz, 1H, Py-H), 6.30 (d, J=3.6Hz, 1H, Py-H), 3.88 (s, 3H, CH3). 13C NMR (100MHz, CDCl3) delta 152.52, 150.71, 141.82, 130.95, 126.63, 123.32, 121.36, 120.74, 116.69, 111.42, 110.47, 55.84. MS (ESI) m/z: 200.5. Anal. Calcd for C12H12N2O: C 71.98, H 6.04, N 13.99. Found: C 71.96, H 6.30, N 13.83.

With the synthetic route has been constantly updated, we look forward to future research findings about Aminoferrocene,belong iron-catalyst compound

Reference£º
Article; Zhuo, Ji-Bin; Ma, Zai-He; Lin, Cai-Xia; Xie, Li-Li; Bai, Sha; Yuan, Yao-Feng; Journal of Molecular Structure; vol. 1085; (2015); p. 13 – 20;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1287-16-7

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.,1287-16-7

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-aminophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed,Added to a dry 250mL single-necked flask,Then 0.1 mmol p-toluenesulfonic acid,To this was added 4 mL of DMF,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,400W under irradiation once every 30s,Irradiation duration of 5min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,That is, 3- (4-aminophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazolecrude product,The crude product was recrystallized using 80% aqueous ethanol,A brown solid,The yield is 85%

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1293-65-8

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1 ,1 ‘-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, n-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4,5- dichlorophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 2 hours before heating to approximately 90 0C for 12 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals., 1293-65-8

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1)., 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion