Share a compound : 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

12093-10-6, General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure.

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1287-16-7

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1287-16-7,Ferrocenylacetic acid,as a common compound, the synthetic route is as follows.,1287-16-7

General procedure: A mixture of ferrocene acetic acid (1 mmol), the required 3-substituted-4-amino-5-mercapto-1,2,4-triazole(1 mmol), and p-toluenesulfonic acid (0.1 mmol) in DMF(10 mL) was stirred until a homogeneous solution was obtained. The mixture was exposed to microwave irradiation for about 3 min at 350 W and then cooled and poured into crushed ice. The mixture was adjusted to pH 7 with potassium carbonate and potassium hydroxide and then kept overnight at room temperature. The crude product was filtered off, dried and recrystallized from 80% ethanol to afford the pure product (Scheme 1).

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liu, Yuting; Xin, Hong; Yin, Jingyi; Yin, Dawei; Transition Metal Chemistry; vol. 43; 5; (2018); p. 381 – 385;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

1287-16-7, Ferrocenylacetic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1287-16-7

1)1 mmol of ferrocenyl acetic acid and 1 mmol of 3-methyl-4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then, 0.15 mmol of p-toluenesulfonic acid,7 mL of DMF was further added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,360W under irradiation once every 30s,Irradiation duration of 5min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,A crude product of 3-methyl-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield was 86%

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1273-82-1

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

2) Under the protection of nitrogen, weighing 10 mmol […] [Ph2P (CH2OH)2]+Cl-And 5 mmol amino ferrocene in 100 ml Schlenk bottle, add 20 ml anhydrous methanol stirring, then add 10 mmol triethylamine, the reaction at room temperature, 6 h after sediment generated a large amount of orange, sand core for funnel drying to obtain FcN [CH2P (Ph)2]2Product 2.1 g, yield about 71%;

1273-82-1 Aminoferrocene 72747180, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Patent; Guangxi Normal University; Wang Xiujian; Gui Liucheng; Xie Tingting; Meng Yanfei; Ma Mengxia; Ni Qingling; (12 pag.)CN109796504; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 1293-65-8

As the rapid development of chemical substances, we look forward to future research findings about 1293-65-8

1,1′-Dibromoferrocene, cas is 1293-65-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

Example L:Preparation of (RC,SFC,SP)-1 -[2-(1 -dimethylaminoethyl)ferrocen-1 -yl]phenylphosphino-1 ‘-bromoferrocene of the formula (B1 ) [Ph = phenyl; Me = methyl].N MthetaQ diastereomers One diastereomer a) Preparation of i -phenylchlorophosphine-i ‘-bromoferrocene (X1 ).At a temperature of <-30C, 14.5 ml (23.2 mmol) of n-butyllithium (n-Bu-Li) (1.6 M in hexane) are added dropwise to a solution of 8 g (23.2 mmol) of 1 ,1 '-dibromoferrocene in 30 ml of tetrahydrofuran (THF). The mixture is stirred at this temperature for a further 30 minutes. The mixture is then cooled to -78C, and 3.15 ml (23.2 mmol) of phenyldichlorophosphine are added dropwise at a sufficiently slow rate that the temperature does not rise above -600C. After stirring at -78C for a further 10 minutes, the temperature is allowed to rise to room temperature, and the mixture is stirred for another hour. A suspension of the monochlorophosphine X1 is thus obtained., 1293-65-8

As the rapid development of chemical substances, we look forward to future research findings about 1293-65-8

Reference£º
Patent; SPEEDEL EXPERIMENTA AG; WO2008/113835; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.102-54-5,Ferrocene,as a common compound, the synthetic route is as follows.

A mixture of 5.3g (28mmol) ferrocene and 60mL chloroform was placed in a 50mL three-neck flask and kept at-5 to-10C. Afterward, 10.5mL phosphorus oxychloride dissolved in 15mL DMF was added for 1.5h. The resulting reaction mixture was refluxed for 12h. After solvent removal, the product was poured into 100mL ice water and filtered. The filtrate was neutralized to pH 8-9 using NaOH (10%, w/v) and then extracted with ether. The organic layer was washed with water and dried over anhydrous MgSO4. After removal of the solvent, the crimson solid was recrystallized from n-hexane. The purified product (1) weighed 2.3g (79% yield). 1H NMR(CDCl3): delta, 9.95 (s, 1H, HC=O), 4.79-4.80 (d, 2H, Cp-rings), 4.60-4.61(d, 2H, Cp-rings), 4.28(s, 5H, Cp?-rings). MS(ESI), m/z: 215.0 (M+) FT-IR (KBr): upsilon (cm-1) 1681(C=O)., 102-54-5

The synthetic route of 102-54-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Jia, Jianhong; Cui, Yanhong; Li, Yujin; Sheng, Weijian; Han, Liang; Gao, Jianrong; Dyes and Pigments; vol. 98; 2; (2013); p. 273 – 279;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1287-16-7

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

1287-16-7, Ferrocenylacetic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1287-16-7

1)1.1 mmol of ferrocenyl acetic acid and 1 mmol of 3-propyl-4-amino-5-mercapto-1,2,4-triazole were weighed out,Added to a dry 250mL single-necked flask,Then 0.1 mmol p-toluenesulfonic acid,Then 5 mL of DMF was added thereto,The glass rod is stirred to dissolve it.2)The round bottom flask was placed in a microwave reactor,350W under irradiation once every 30s,The duration of irradiation is 3min.After irradiation,cool down.3)Pour it into a crushed beaker,With potassium carbonate and potassium hydroxide pH = 7,Placed overnight,filter,Washed,dry,The crude product of 3-propyl-6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,With 80% aqueous ethanol recrystallization,A brown solid,The yield was 84%

The synthetic route of 1287-16-7 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Extracurricular laboratory: Synthetic route of 102-54-5

As the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Ferrocene, cas is 102-54-5, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: A solution of acid chloride (63 mmol) in 30 mL drydichloromethane was added to a suspension of anhydrousaluminum chloride (8.41 g, 63 mmol) in 30 mLdry dichloromethane, and the mixture was stirred at 5 Cfor 1 h under Argon. The solution of aluminum chloride/acid chloride complex was added dropwise over 30 minto a solution of ferrocene (11.16 g, 60 mmol) in 100 mLdry dichloromethane at 0 C. The reaction mixture waswarmed to room temperature and stirred for 16 h. A solutionof NaBH4(2.38 g, 63 mmol) in 25 mL diglyme wasadded dropwise to the purple reaction mixture at -5 C. Anorange solution was formed and stirred at 0 C for 1 h. Themixture was then hydrolyzed with addition of 20 mL waterwhile maintaining its temperature at less than or equal to10 C. The mixture was allowed to separate by settling,and the organic phase was then withdrawn. The aqueousphase was extracted with 3 times 30 mL of dichloromethane,and then all the organic phases are combined. Combinedorganic layer was washed with 50 mL of brine. Afterthe drying of organic layer on the Na2SO4,dichloromethanewas distilled under atmospheric pressure. The diglymeand the residual ferrocene which was found to be entrainedby the diglyme were then distilled at reduced pressureapproximately 20 mm Hg and a column head temperatureof 85-95 C. The alkylferrocene derivatives were distilledat a more reduced pressure, less than 5 mm Hg., 102-54-5

As the rapid development of chemical substances, we look forward to future research findings about 102-54-5

Reference£º
Article; Teimuri-mofrad, Reza; Safa, Kazem D.; Abedinpour, Saiedeh; Rahimpour, Keshvar; Journal of the Iranian Chemical Society; vol. 14; 10; (2017); p. 2177 – 2185;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 102-54-5

102-54-5 Ferrocene 7611, airon-catalyst compound, is more and more widely used in various fields.

102-54-5, Ferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,102-54-5

General procedure: A solution of acyl chloride (53.76 mmol) in 25 ml drydichloromethane was added to a suspension of anhydrousaluminum chloride (7.7 g, 53.76 mmol) in 25 ml drydichloromethane and the mixturewas stirred at 5 C for 1 hunder argon. The solution of aluminum chloride/acyl chloridecomplexwas added dropwise for 30 min to a solution offerrocene (10 g, 53.76 mmol) in 130ml dry dichloromethaneat 0 C. The reaction mixture was warmed to room temperatureand stirred for 16 h. A solution of NaBH4 (2.29 g,53.76 mmol) in 25 ml diglyme was added dropwise to thepurple reaction mixture at 5 C to form an orange solutionas the result which was stirred for an hour in 0 C. Themixture was hydrolyzed with water while maintaining itstemperature at less than or equal to 10 C. The mixture wasallowed to separate by settling and the organic phase wasthen withdrawn. The aqueous phase was extracted 3 timeswith 30 ml of CH2Cl2 and then all the organic phases werecombined,washed with 50 ml of brine, CH2Cl2was removedand the diglyme and the residual ferrocene which wasfound to be entrained by the diglyme, were distilled atreduced pressure of approximately 20 mm Hg at a columnhead temperature of 85 Ce95 C. The alkylferrocene derivativeswere distilled, at less than 5mmHg. Specific detailsare given for each compound.

102-54-5 Ferrocene 7611, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Teimuri-Mofrad, Reza; Mirzaei, Farzaneh; Abbasi, Hassan; D. Safa, Kazem; Comptes Rendus Chimie; vol. 20; 2; (2017); p. 197 – 205;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-82-1

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

General procedure: Ferrocenylamine (1 eq.) and 5-bromo-4-nitro-2-furaldehyde (4-NO2) (1 eq.) were dissolved in dry toluene (15 mL) and refluxed for 6 h under a nitrogen atmosphere. After this time, the solvent wasremoved under vacuum. The solid obtained contains a mixture of imine (1a) and amine (1b) (by TLC and 1H NMR). These complexes were separated by column chromatography on silica gel usingCH2Cl2 as the eluent. The first (red) band contained complex 1b,and the second (purple) band contained complex 1a. Finally, bothsolids obtained after solvent evaporation were purified by crystallizationfrom CH2Cl2/hexane (1:5) at 18 C.

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Toro, Patricia M.; Acuna, Alejandra; Mallea, Mario; Lapier, Michel; Moncada-Basualto, Mauricio; Cisterna, Jonathan; Brito, Ivan; Klahn, Hugo; Journal of Organometallic Chemistry; vol. 901; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion