Extracurricular laboratory: Synthetic route of 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Aminoferrocene, cas is 1273-82-1, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

2) Under the protection of nitrogen, weighing 10 mmol […] [Ph2P (CH2OH)2]+Cl-And 5 mmol amino ferrocene in 100 ml Schlenk bottle, add 20 ml anhydrous methanol stirring, then add 10 mmol triethylamine, the reaction at room temperature, 6 h after sediment generated a large amount of orange, sand core for funnel drying to obtain FcN [CH2P (Ph)2]2Product 2.1 g, yield about 71%;, 1273-82-1

As the rapid development of chemical substances, we look forward to future research findings about 1273-82-1

Reference£º
Patent; Guangxi Normal University; Wang Xiujian; Gui Liucheng; Xie Tingting; Meng Yanfei; Ma Mengxia; Ni Qingling; (12 pag.)CN109796504; (2019); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 12582-61-5

The synthetic route of 12582-61-5 has been constantly updated, and we look forward to future research findings.

12582-61-5, Meso-5,10,15,20-Tetraphenyl-21H,23H-porphineironu-oxodimer is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12582-61-5

General procedure: To a CH2Cl2 solution (15 mL) of [(TPP)Fe]2(mu-O) (0.033 g, 0.024 mmol) was added trichloroacetic acid (0.010 g, 0.06 mmol). The mixture was stirred for 45 min, during which time the color of the solution changed from green to brown. The solvent was reduced to ?3 mL and hexane (10 mL) was added. The solution was slowly concentrated under reduced pressure until precipitation of the product occurred. The dark brown precipitate was collected by filtration, washed with hexane (2 ¡Á 15 mL), and dried in vacuo to give (TPP)Fe(OC(=O)CCl3) (0.020 g, 0.024 mmol, 50% isolated yield).

The synthetic route of 12582-61-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Xu, Nan; Yan, Beiqi; Awasabisah, Dennis; Powell, Douglas R.; Richter-Addo, George B.; Inorganica Chimica Acta; vol. 469; (2018); p. 183 – 188;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-82-1

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Example 1 Preparation of N,N-Dimethylaminoferrocene (11)19,20 A solution of aminoferrocene (1.07 g, 5.32 mmol) in acetic acid (15 mL) under argon was treated with paraformaldehyde (1.59 g, 53.2 mmol) and NaBH3CN (1.67 g, 26.6 mmol) and stirred at room temperature for 16 h. The reaction mixture was brought to pH 12 by addition of 6 M aqueous NaOH solution, and extracted with hexanes (3*20 mL). The combined organic extract was washed with water and brine, dried over anhydrous Na2SO4, filtered and concentrated to approx. 5% of its original volume under reduced pressure. The solution was filtered through basic alumina (20 mL) with hexanes, concentrated back to its pre-filtration volume and left to crystallize in a freezer to give N,N-dimethylaminoferrocene (11) (1.11 g, 91%) as orange flakes; mp 69-70 C. (hexanes); IR (KBr) vmax 3106, 2981, 2952, 2857, 2827, 2782, 1508 cm-1, 1H NMR (300 MHz, CDCl3) 4.25 (s, 5H), 3.93 (s, 2H), 3.78 (s, 2H), 2.59 (s, 6H); 13C NMR (75.5 MHz, acetone-d6) 115.8, 66.5, 63.0, 54.6, 41.5; EIMS [m/z(%)] 229 (M+, 100), 186 (18), 121 (17); HRMS (EI) calcd for C12H16N56Fe: 229.0554. found 229.0553. Anal. Calcd for C12H16N56Fe: C, 62.91; H, 6.60. Found: C, 62.95; H, 6.60., 1273-82-1

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; BROCK UNIVERSITY; US2010/137588; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1273-82-1

As the paragraph descriping shows that 1273-82-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-82-1,Aminoferrocene,as a common compound, the synthetic route is as follows.,1273-82-1

General procedure: Organometallic sulfonamides were prepared following a modification of the procedure described by Alberto and co-workers [41]. An equimolar amount of pyridine was added at room temperature to a solution containing 50mg of P2 or P3 in 7.0mL of anhydrous CH2Cl2. After 15min, the corresponding sulfonyl chloride derivative was added, and the reaction mixture was heated under reflux for 24h. The resulting solution was dried under vacuum. The crude product was purified using silica gel liquid chromatography and a mixture of CH2Cl2/hexane (4:1) as the eluent. All compounds were recrystallized from an acetone/hexane (1:5) mixture by slow evaporation.

As the paragraph descriping shows that 1273-82-1 is playing an increasingly important role.

Reference£º
Article; Quintana, Cristobal; Silva, Gisella; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Novoa, Nestor; Arancibia, Rodrigo; Polyhedron; vol. 134; (2017); p. 166 – 172;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 1293-65-8

1293-65-8 1,1′-Dibromoferrocene 72376387, airon-catalyst compound, is more and more widely used in various.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1293-65-8

1 ,1 ‘-Dibromoferrocene (0.67 g, 1.97 mmol) in anhydrous tetrahydrofuran (THF) (30 ml) was placed in a reaction vessel and cooled to -78 0C using a dry ice and acetone mixture, n-butyl lithium (0.94 ml, 2.36 mmol) was added under inert conditions thereto and the contents of the reaction vessel kept stirred for approximately 1 hour while cold zinc chloride (2.16 ml, 2.16 mmol) was added. Tetrakis(triphenylphosphine)palladiumO (50 mg) and 4-iodophthalonitrile (0.5 g, 1.97 mmol) were then added. The contents of the reaction vessel were allowed to warm to room temperature and were kept stirred for approximately 16 hours. Thereafter, water (20 ml) was added and extracted with dichloromethane (3 x 20 ml). The combined organic layers were dried over magnesium sulfate and reduced to dryness under reduced pressure to obtain a crude product. The crude product was placed on alumina and eluted with diethyl ether ; petroleum spirit (55:45) to yield red crystals.

1293-65-8 1,1’-Dibromoferrocene 72376387, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; CORUS UK LIMITED; HOLLIMAN, Peter; RUGEN-HANKEY, Sarah; WO2010/136178; (2010); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1293-65-8

1293-65-8 1,1′-Dibromoferrocene 72376387, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.,1293-65-8

To a solution of 103 g (0.3 mol) of 1 ,1 ‘-dibromoferrocene in 300 ml of THF are added dropwise, at a temperature of < -300C, 120 ml (0.3 mol) of n-BuLi (2.5 M in hexane). The mixture is stirred at this temperature for a further 1.5 hour. The mixture is then cooled to -500C, and 66.2 ml (0.3 mol) of dicyclohexylphosphine chloride are added dropwise sufficiently slowly that the temperature does not rise above -45C. After stirring for a further 10 minutes, the temperature is allowed to rise to room temperature and the mixture is stirred for another hour. After 150 ml of water have been added, the reaction mixture is extracted by shaking with hexane. The organic phases are dried over sodium sulphate and the solvent is distilled off under reduced pressure on a rotary evaporator. The residue is crystallized in ethanol. The product A2 is obtained with a yield of 84% (yellow solid).31P NMR (121.5 MHz, C6D6): delta -8.3 (s); 1H NMR (300 MHz, C6D6): delta 4.41 (m, 2H), 4.26 (m, 2H), 4.23 (m, 2H), 3.97 (m, 2H), 1.20-2.11 (m, 22H).

1293-65-8 1,1′-Dibromoferrocene 72376387, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; SOLVIAS AG; WO2009/65784; (2009); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1273-82-1

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

1273-82-1, Aminoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,1273-82-1

General procedure: Aminoferrocene (1, 11.0 mg, 0.0547 mmol) was dissolved in 9 cm3 toluene. Formylphenylboronic acid (2, 8.2 mg,0.0547 mmol) was dissolved in 1 cm3 dry ethanol. Both reagent solutions were mixed in an evaporating flask. The solvents were removed under reduced pressure on a rotary vacuum evaporator (the water bath temperature strictly below 40 C) to give [(ferrocenylimino)methyl]phenylboronic acid 3 as a violet/red powder; 18.2 mg (quant.). The products were used as prepared without need of a further purification (Fig. 5). 2-[(Ferrocenylimino)methyl]phenylboronic acid(3a, C17H16BFeNO2) 1H NMR (300.15 MHz, CD3OD): d = 4.30 (s, 5H Cp),4.44 (t, J = 2.0 Hz, 2H2[), 5.03 (t, J = 2.0 Hz, 2H3[),7.39 (d, J = 7.2 Hz, 1H5[), 7.51 (t, J = 6.5 Hz, 1H6[),7.56 (t, J = 7.0 Hz, 1H7[), 7.68 (d, J = 7.4 Hz, 1H8[),9.15 (s, 1H4[) ppm; 11B NMR (96.3 MHz, CD3OD):d = 13.55 ppm; 13C NMR (125.75 MHz, CD3OD):d = 63.26 (2C CpN), 67.55 (2C CpN), 69.88 (5C Cp),94.70 (Cipso CpN), 126.27 (Ar), 127.92 (Ar), 129.69 (Ar),131.84 (Ar), 138.92 (Ar), 162.50 (Cimino) ppm; ESI-MS2(40 eV): m/z (%) = 333.0574 (11) [M]?, 316.0553 (12),268.0197 (100), 250.0092 (21), 196.0906 (26), 133.0441(16); calcd. mass C17H16BFeNO2: m/z = 333.0624 [M]?; FT-IR (neat): m = 481, 758, 813, 999, 1104, 1246, 1336,1556, 1608, 2887, 2969, 3088, 3341 cm-1.

The synthetic route of 1273-82-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Konhefr, Martin; Lacina, Karel; Langmajerova, Monika Skrutkova; Glatz, Zden?k; Skladal, Petr; Mazal, Ctibor; Monatshefte fur Chemie; vol. 148; 11; (2017); p. 1953 – 1958;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.,12093-10-6

To a round bottomed flask equipped with a magnetic stirrer bar was added ferrocene carboxaldehyde(535 mg, 2.5 mmol, 1 eq). The flask was then charged with ethanol (4 cm3) and THF (1 cm3). Thered solution was then treated with sodium borohydride (123 mg, 3.2 mmol, 1.3 eq). The flask wasthen sealed and placed under a nitrogen atmosphere. After 30 minutes the solution had changedcolour to an orange and TLC analysis indicated full consumption of the starting material. The flaskwas then concentrated to 90% of original volume in vacuo. The dark orange residue was then takenup in EtOAc (15 cm3) and NaHCO3 (15 cm3). The bi-phasic mixture was transferred to separatingfunnel, the aqueous layer was separated and then back extracted with EtOAc (3 x 5 cm3), thecombined organic washings were then dried over MgSO4, filtered and then concentrated in vacuo togive a yellow solid. The ferrocene methanol was then taken up in 1,3-propanediol (5 cm3), the yellowsolution was then treated with ytterbium (Ill) triflate (77 mg, 0.125 mmol, 5 mol%). The flask wasthen sealed and heated to 100 C. After heating for 10 minutes TLC analysis indicated fullconsumption of the starting material. The flask was cooled to room temperature, diluted with H20(20 cm3) and EtOAc (20 cm3). The organic layer was then separated and the aqueous layer backextracted with EtOAc (3 x 5 cm3). The combined organic layers were then washed with H20 (2018 cm3) and brine (sat) (20 cm3) then dried over MgSO4, filtered then concentrated in vacuo to give an orange solid. Purification was then carried out by silica-gel chromatography eluting with n-Hex 1:1 EtOAc to give the desired product 3-(ferrocenyloxy)propan-lol (1) as an orange powder (514 mg, 74%).?H NIVIR (250 MHz, CDC13); oH: 4.24 (s, 4H), 4.11 (s, 6H), 3.65 (t, 2H, J 5.4 Hz), 3.54 (t, 2HJ=5.4 Hz), 3.65 (t, 2H J = 5.4 Hz), 2.52 (br s, 1H), 1.7 (quin 2H, J = 5.6 Hz); ?3C NIVIR (75 IVIHz, CDC13); Oc: 83.6, 77.3, 71.5, 69.4, 69.3, 69.2, 68.7, 32.0; HRMS (ESI iTOF) calculated for C,4H,8FeO2Na m/z 297.0553 found 297.0560 (m/z + Na); Electrochemical potential: 181 mV.

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; ATLAS GENETICS LIMITED; MARSH, Barrie J.; FROST, Christopher G.; SHARP, Jonathan; WO2015/52516; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

12093-10-6, General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure.

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 102-54-5

102-54-5 Ferrocene 7611, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.102-54-5,Ferrocene,as a common compound, the synthetic route is as follows.,102-54-5

To a solution of ferrocene (1; 5.00 g, 26.87 mmol) in anhydrous CH 2 Cl 2(30 mL), a solution of acetyl chloride (2.01 mL, 28.21 mmol) and AlCl 3(3.94 g, 29.55 mmol) in anhydrous CH 2 Cl 2 (40 mL) was added at 0 C.The reaction temperature was allowed to rise to r.t., and the dark-vio-let solution was stirred for 2 h. The reaction was quenched by addi-tion of ice-cold water (70 mL) at 0 C and the mixture was extractedwith CH 2 Cl 2 (3 ¡Á 70 mL). The collected organic layers were washedwith a solution of Na 2 CO 3 (50 mL), dried over Na 2 SO 4 , filtrated and thesolvent was removed under reduced pressure. Crude product (dark-orange solid) was purified by chromatography on SiO 2 (hexanes/EtOAc = 4:1; R f = 0.3) to afford target product 2.Yield: 4.45 g (73%); orange solid; mp 85-86 C (lit. 20 85-86 C).1 H NMR (300 MHz, CDCl 3 ): delta = 4.78-4.76 (m, 2 H), 4.55-4.42 (m, 2 H),4.20 (s, 5 H), 2.40 (s, 3 H).NMR spectra are in agreement with those of the commercially avail-able product.

102-54-5 Ferrocene 7611, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Plevova, Kristina; Mudrakova, Brigita; ?ebesta, Radovan; Synthesis; vol. 50; 4; (2018); p. 760 – 763;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion