Some tips on 14024-18-1

14024-18-1 Iron(III) acetylacetonate 91759530, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14024-18-1,Iron(III) acetylacetonate,as a common compound, the synthetic route is as follows.

A slurry of Fe(acac)3 (25 mg) in benzylalcohol (5.0 g)with carbon sphere (50 mg) was heated to 180 C under anargon atmosphere. The reaction mixture was maintainedat this temperature for 3 h, and the resulting dark-brownreaction mixture was cooled to room temperature. Theresidue was washed with ethanol to provide dark-brownCarbon/Fe3O4 powders with particle sizes of 320¡À27 nm.The Carbon/Fe3O4 powders were loaded in an aluminaboat in a box furnace and were annealed at 500 C for3 h under an atmospheric pressure of air, producing hollowFe2O3 nanospheres.

14024-18-1 Iron(III) acetylacetonate 91759530, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Oh, Kyung Hee; Park, Hyung Ju; Kang, Shin Wook; Park, Ji Chan; Nam, Ki Min; Journal of Nanoscience and Nanotechnology; vol. 18; 2; (2018); p. 1356 – 1360;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 14024-18-1

As the paragraph descriping shows that 14024-18-1 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14024-18-1,Iron(III) acetylacetonate,as a common compound, the synthetic route is as follows.

Fe(acac)3 (3?mmol, 0.706?g) was dissolved in oleylamine (15?mL) and benzyl ether (15?mL) mixed solution and magnetically stirred under a flow of nitrogen. The mixture was dehydrated at 110?C for 1?h, then quickly heated to 300?C at a heating rate of 20?C/min and allowed to react for another 1?h. The black-brown mixture was cooled to room temperature and extract with ethanol (40?mL) to precipitate out the crude Fe3O4 MNPs, which was collected by centrifugation (8000?rpm, 10?min). The black product was then purified by dissolving in hexane (35?mL) and reprecipitating by addition of ethanol (50?mL) for 3 times to give rise to pure Fe3O4 MNPs in black powder (0.15?g). hydrophobic to hydrophilic.

As the paragraph descriping shows that 14024-18-1 is playing an increasingly important role.

Reference£º
Article; Guo, Hongen; Zhang, Yixia; Liang, Wenting; Tai, Feifei; Dong, Qingchen; Zhang, Ruiping; Yu, Baofeng; Wong, Wai-Yeung; Journal of Inorganic Biochemistry; vol. 192; (2019); p. 72 – 81;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.

General procedure: At 78 C, 1.6M n-butyllithium in hexane (1.25 mL) was addeddropwise to a solution of 1,10-dibromoferrocene (0.69 g, 2.0 mmol)in 10 mL THF. The reaction mixture was stirred at the same temperaturefor 0.5 h before adding 2,2,6,6-tetramethylpiperidine(0.40 mL, 2.2 mmol) dropwise. The reaction mixture was stirredfor 3 h, keeping the temperature below 40 C. A solution of tetramethylthiuramdisulfide (0.48 g, 2.0 mmol) in 20 mL THF wasadded, and the reaction mixture was slowly warmed to roomtemperature. After adding water (5 mL), the reaction mixture wasextracted with dichloromethane (2 x 40 mL). The collected organiclayers were washed with water (2 x 20 mL) and dried with anhydroussodium sulfate. After removing the solvent under reducedpressure, the crude product was purified by column chromatography(alumina, dichloromethane/hexane 3:7) to afford P1 as ayellow solid (0.33 g, 43%).

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Horikoshi, Ryo; Sumitani, Ryo; Mochida, Tomoyuki; Journal of Organometallic Chemistry; vol. 900; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Downstream synthetic route of 1293-65-8

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

1293-65-8, 1,1′-Dibromoferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

At 78 C, 1.6M n-butyllithium in hexane (1.25 mL) was addeddropwise to a solution of 1,10-dibromoferrocene (0.69 g, 2.0 mmol)in 10 mL THF. The reaction mixture was stirred at the same temperaturefor 0.5 h before adding 2,2,6,6-tetramethylpiperidine(0.40 mL, 2.2 mmol) dropwise. The reaction mixture was stirredfor 3 h, keeping the temperature below 40 C. A solution of tetramethylthiuramdisulfide (0.48 g, 2.0 mmol) in 20 mL THF wasadded, and the reaction mixture was slowly warmed to roomtemperature. After adding water (5 mL), the reaction mixture wasextracted with dichloromethane (2 x 40 mL). The collected organiclayers were washed with water (2 x 20 mL) and dried with anhydroussodium sulfate. After removing the solvent under reducedpressure, the crude product was purified by column chromatography(alumina, dichloromethane/hexane 3:7) to afford P1 as ayellow solid (0.33 g, 43%). 1H NMR (400 MHz, CDCl3): delta 3.18 (s,3H,-N-CH3), 3.54 (s, 3H,-N-CH3), 4.28 (s, 5H, Cp-H), 4.39 (q, 1H,Cp-H, J 1.8 Hz), 4.43 (t, 1H, Cp-H, J 2.8 Hz), 4.76 (q, 1H, Cp-H,J 1.4 Hz). IR (ATR/cm-1): nu 2359, 2342, 1622, 1574, 1508, 1443,1242, 1157, 1107, 1045, 978, 930, 827, 772, 685, 615, 542, 494, 473.

As the paragraph descriping shows that 1293-65-8 is playing an increasingly important role.

Reference£º
Article; Horikoshi, Ryo; Sumitani, Ryo; Mochida, Tomoyuki; Journal of Organometallic Chemistry; vol. 900; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Analyzing the synthesis route of 1293-65-8

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1293-65-8,1,1′-Dibromoferrocene,as a common compound, the synthetic route is as follows.

Part (I)Preparation of 1-bromo-l’ -triphenylsilyl ferroceneTo 1, l’-dibromoferrocene (10.14g, 29.49mmol) in dry THF (200ml) cooled to -780C (dry ice/acetone bath) was added n-butyllithium(12.56ml, 28.02mmol, 0.95eq) and the reaction was stirred underN2 for 30 min. Chlorotriphenylsilane (8.26g, 28.02mmol, 0.95eq) dissolved in the minimum amount of dry THF was then added dropwise and the solution was then allowed to warm up to room temperature and further stirred for twelve hours resulting in a red solution.The reaction was then quenched with water, and stirred for a further fifteen minutes. The ethereal layer, containing product was separated and the aqueous layer was further extracted several times with diethyl ether. The combined ether fractions were dried over magnesium sulphate and filtered through celite. The ether solvent was removed by rotary evaporator (resulting in red oil) . The product was purified by column chromatography. Starting material was removed with petrol and the product was then obtained with petrol/10% Et2theta as an orange band. The resulting oil was finally dried under vacuum leaving pure product as orange crystals: (11.09g, 72 % yield).

The synthetic route of 1293-65-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; LUCITE INTERNATIONAL UK LIMITED; WO2008/65448; (2008); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Simple exploration of 1287-16-7

1287-16-7 Ferrocenylacetic acid 73425372, airon-catalyst compound, is more and more widely used in various.

1287-16-7, Ferrocenylacetic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

11-O-Nitro-azithromycin (0.25 mmol) was dissolved in dry dichloromethane (5 mL). To this was added EDCI (2 eq., 0.5 mmol) and 2-ferrocenyl acetic acid (1.1 eq., 0.28 mmol). The reaction was stirred overnight at room temperature. The solvent was removed in vacuo and the resulting white amorphous foam. The resulting crude product was purified by column chromatography with a gradient starting at 10 % of acetone in cyclohexane (0.2% Et3N).

1287-16-7 Ferrocenylacetic acid 73425372, airon-catalyst compound, is more and more widely used in various.

Reference£º
Patent; SYNOVO GMBH; PIETRZIK, Nikolas; BURNET, Michael, W.; BAEUERLEIN, Christiane; EGGERS, Mary; GUSE, Jan-hinrich; HAHN, Ulrike; STRASS, Simon; (0 pag.)WO2018/161039; (2018); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Brief introduction of 1271-55-2

The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a solution of acetyl ferrocene (0.34 g, 2.5 mmol) and correspondingactive aldehyde (2.5 mmol) in dry ethanol (20 ml) takenin a beaker (100 ml), a catalytic quantity of potassium hydroxide(0.05 g, 1.25 mmol)was added and the reaction mixturewas heatedinside a microwave oven for 54e68 s (at 210W, i.e. ~30% microwavepower) [25]. After complete the reaction mixture was cooled in anice bath and the product thus formed were filtered, washed withethanol followed by washing with water till the washings wereneutral and recrystallized from distilled ethanol and chloroform(Scheme 1 and Table 1).

The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Khan, Salman A.; Asiri, Abdullah M.; Al-Ghamdi, Najat Saeed M.; Zayed, Mohie E.M.; Sharma, Kamlesh; Parveen, Humaira; Journal of Molecular Structure; vol. 1139; (2017); p. 137 – 148;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Brief introduction of 1273-86-5

The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A 48% aqueous solution of tetrafluoroboric acid (0.21 mL, 1.2 mmol) was added to a suspension of ferrocenyl carbinol (1 mmol) and 2mercaptobenzoxazole (1 mmol) in dichloromethane (1 mL) under vigorous stirring. The stirring was continued for 5-15 mL. Then water (10 mL) and diethyl ether (10 mL) were added to the reaction mixture. The resulting mixture was washed with water (2¡Á20 mL), the organic layer was separated and dried with Na2SO4. The solvent was removed under water pump vacuum. 3(Ferrocenylmethyl)benz[d]oxazole-2-thione (1a). Yield 72%. Yellow powder. M.p. 166.8-167.2 C. Found (%): C, 61.97; H, 4.32; N, 4.04; Fe, 15.96. Calculated (%): C, 61.91; H, 4.33; N, N, 4.01; Fe, 15.99. Rf 0.6 (petroleum ether-ethyl acetate, 3 : 1). MS, m/z (Irel(%)): 349 [M]+ (100). 1H NMR, delta: 4.18 (s, 2 H, C5H4); 4.27 (s, 5 H, C5H5); 4.48 (s, 2 H, C5H4); 5.21 (s, 2 H, CH2); 7.15 (d, 1 H, Het, J = 7.6 Hz); 7.22-7.31 (m, 2 H, Het); 7.32 (d, 1 H, Het, J = 7.6 Hz). 13C NMR, delta: 45.66 (CH2), 68.74 (C5H4), 68.96 (C5H5), 69.69 (C5H4), 80.29 (ipsoC5H4), 109.81 (Het), 110.34 (Het), 124.17 (Het), 124.75 (Het), 131.51 (Het), 147.05 (Het), 180.06 (C=S).

The synthetic route of 1273-86-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Osipova, E. Yu.; Ivanova; Rodionov; Korlyukov; Arkhipov; Simenel; Russian Chemical Bulletin; vol. 65; 12; (2016); p. 2868 – 2872; Izv. Akad. Nauk, Ser. Khim.; vol. 65; 12; (2016); p. 2868 – 2872,5;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Analyzing the synthesis route of 14024-18-1

The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14024-18-1,Iron(III) acetylacetonate,as a common compound, the synthetic route is as follows.

General procedure: Monodisperse synthetic Fe1-xMgxFe2O4 (x=0, 0.1, 0.2, 0.3, 0.4, & 0.5) nanospheres were synthesized by recently developed solvothermal reflux method using high boiling point organic solvents mixture as reaction solvent [14,15]. Iron(III) acetylacetonate or Fe(C5H7O2)3 (solid, 97 %, Sigma-Aldrich), Magnesium acetylacetonate or Mg(C5H7O2)2 (solid, 97 %, Aldrich) were used as metal precursors. Benzyl ether (liquid, 98 %, Aldrich, boiling point (bp): 298C) and oleylamine (liquid, 70 %, Aldrich, bp: 364C) solvents mixture as reaction solvent, and oleic acid (liquid, 65 %, SDFCL, bp: 360C) as surfactant were used. To synthesize 0.5g of target composition compound, 40mL of benzylether (BE) and 10mL of oleylamine (OAm) solvents mixture were taken as reaction solvent in three neck round bottom (RB) flask (250mL). The mixture was stirred with magnetic stirrer for 10min. to make it homogeneous. Metal precursor powders were finely grounded to enhance their decomposition. Stoichiometric metal precursor fine powders were added to the reaction solvents mixture. The mixture was stirred for 10min. to make homogeneous solution. Then 5mL of oleic acid (OA) (?2.5 times of metal cations mols) was added. The resultant reactants mixture was heated to boiling point of the solvent mixture (300C) by electric heating mantle at 5C/min ramp. The boiling solvents produce natural gas bubbles. The reaction was carried out for 1h at this temperature and then naturally cooled the RB flask to room temperature. To precipitate crystallined ferrite nanoparticles, anti-solvent such as ethanol was added to the reaction mixture. The precipitated nanoparticles were separated by sedimentation principle through centrifugation. The nanoparticles were redispersed in good solvents such as n-hexane. To further purify the nanoparticles from residual organic molecules (surfactant), the redispersed particles were precipitated, separated and redispersed by the above procedure, at least two times.

The synthetic route of 14024-18-1 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Manohar; Krishnamoorthi; Journal of Magnetism and Magnetic Materials; vol. 443; (2017); p. 267 – 274;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

Downstream synthetic route of 1287-16-7

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

1287-16-7, Ferrocenylacetic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1) 1.1 mmol of ferrocenyl acetic acid and 1 mmol of 3- (4-nitrophenyl) -4-amino-5-mercapto-1,2,4-triazole were weighed out, Added to a dry 250mL single-necked flask, Then 0.11 mmol p-toluenesulfonic acid was added, To this was added 4 mL of DMF, The glass rod is stirred to dissolve it. 2)The round bottom flask was placed in a microwave reactor, 400W under irradiation once every 30s, Irradiation duration of 4min. After irradiation, cool down. 3) Pour it into a crushed beaker, With potassium carbonate and potassium hydroxide pH = 7, Placed overnight,filter,Washed,dry,The crude product of 3- (4-nitrophenyl) -6-ferrocenylmethylene-1,2,4-triazolo [3.4-b] -1,3,4-thiadiazole was obtained,Using a solvent of DMF and absolute ethanol in a volume ratio of 3: 1 mixed solvent,The crude product was recrystallized,That is, a brown solid,The yield was 84%

As the paragraph descriping shows that 1287-16-7 is playing an increasingly important role.

Reference£º
Patent; Shaanxi University of Science and Technology; Liu, Yuting; Song, Simeng; Yin, Dawei; Jiang, Shanshan; Liu, Beibei; Yang, Aning; Wang, Jinyu; Lyu, Bo; (13 pag.)CN104231004; (2017); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion