Extracurricular laboratory: Synthetic route of 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Ferrocenecarboxaldehyde, cas is 12093-10-6, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.

General procedure: To a solution of acetophenone derivative (1 equiv.) in dry THF (4 mL/mmol) was added sodium hydride (4 equiv.). The resulting mixture was stirred at 25 C for 30 min and ferrocene carboxaldehyde (1.5 equiv.) was added in dry THF (4 mL/mmol) and the mixture was stirred at 25 C for 4-8 h. After the disappearance of the starting material on TLC, the solution was poured into 1M hydrochloric acid and extracted with CH2Cl2. The combined organic layers were washed with water, dried over anhydrous magnesium sulfate, filtered and concentrated under reduced pressure., 12093-10-6

As the rapid development of chemical substances, we look forward to future research findings about 12093-10-6

Reference£º
Article; Peres, Basile; Nasr, Rachad; Zarioh, Malik; Lecerf-Schmidt, Florine; Di Pietro, Attilio; Baubichon-Cortay, Helene; Boumendjel, Ahcene; European Journal of Medicinal Chemistry; vol. 130; (2017); p. 346 – 353;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.12093-10-6,Ferrocenecarboxaldehyde,as a common compound, the synthetic route is as follows.,12093-10-6

General procedure: The ferrocenecarboxaldehyde (2.0mmol) and the acetyl pyridine or amino acetophenone derivatives (2.0mmol) were added to a round bottom flask at rt. Then, a freshly prepared NaOH solution (0.5mmol in 1.0 mL each of H2O and EtOH) was added dropwise and left stirring at rt. When completed, the resulting product was filtered at reduced pressure, washing with cold water. The crude product was then recrystallized as described. Compound 2a: 3-ferrocenyl-1-(2-pyridinyl) prop-2-en-1-one was obtained as dark violet crystals after recrystallization using acetone:H2O mixture. Yield: 0.41g (64%) of pure product. 1H NMR (500MHz, CDCl3): delta=8.73 (s, 1H), 8.18 (d, J=7Hz, 1H), 7.89 (s, 1H), 7.86 (d, J=4Hz, 2H), 7.46 (s, 1H), 4.67 (s, 2H), 4.49 (s, 2H), 4.18 (s, 5H). 13C NMR (125MHz, CDCl3): delta=188.5, 154.7, 148.8, 147.2, 137.0, 126.5, 122.9, 117.8, 79.5, 71.5, 69.9, 69.5. FT-IR (neat) numax (cm-1): 1659 (m), 1591 (m), 1574 (w), 1462 (w), 1396 (m).

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Delgado-Rivera, Sara M.; Perez-Ortiz, Giovanny E.; Molina-Villarino, Andres; Morales-Fontan, Fabiel; Garcia-Santos, Lyannis M.; Gonzalez-Albo, Alma M.; Guadalupe, Ana R.; Montes-Gonzalez, Ingrid; Inorganica Chimica Acta; vol. 468; (2017); p. 245 – 251;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: The substituted ketone (3 mmol) and KOH(0.2 g) were dissolved in ethanol (5 mL) in a round bottomedflask and stirred at room temperature (25 C) for 10 min. Anethanolic solution of the substituted aromatic aldehyde (3 mmol,5 mL) was added drop wise and the mixture was stirred at roomtemperature. The progress of the reaction was monitored by TLCon silica gel sheets. The reaction was stopped by neutralizingthe stirred solution with 2 M HCl. In most of the cases the productwas obtained as a dark red precipitate after neutralization. It wasthen removed by filtration, washed with water. In the absence ofa precipitate on neutralization, the solution was extracted withethyl acetate (20 mL ¡Á 3). The organic layer was dried overanhydrous sodium sulphate and removed by evaporation underreduced pressure to give a liquid residue. The latter was passedthrough a column of silica gel (230-400 mesh) and eluted withTHF-hexane (1:4) to yield pure compound. All the synthesizedcompounds were well characterized by spectroscopic methodssuch as IR, NMR, Mass and elemental analysis and their spectralcharacteristics were found to be in good general agreement withthose found in literature30.

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Mukhtar, Sayeed; Manasreh, Waleed Atef; Parveen, Humaira; Azam, Amir; Asian Journal of Chemistry; vol. 26; 24; (2014); p. 8407 – 8412;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 12093-10-6

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

To a solution of hydroxylamine hydrochloride (0.83 g,11.97 mmol) in methanol (10 mL) was added sodium carbonate(0.63 g, 5.98 mmol). The mixture was stirred for 5 min. Then, ferrocenecarboxaldehyde1 (2.33 g, 10.88 mmol) was added and the reaction mixture was stirred at room temperature for 12 h. The precipitate formed was then filtered off and the filtrate was evaporated in vacuo. The product was washed with hexane (10 mL) toafford the pure ferrocenecarboxaldehyde oxime 4 in ca. 85% yield(Scheme 2).

As the paragraph descriping shows that 12093-10-6 is playing an increasingly important role.

Reference£º
Article; Lasri, Jamal; Elsherbiny, Abeer S.; Eltayeb, Naser Eltaher; Haukka, Matti; El-Hefnawy, Mohamed E.; Journal of Organometallic Chemistry; vol. 866; (2018); p. 21 – 26;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on Ferrocenecarboxaldehyde

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

As a common heterocyclic compound, it belongs to iron-catalyst compound, name is Ferrocenecarboxaldehyde, and cas is 12093-10-6, its synthesis route is as follows.,12093-10-6

(2) Synthesis of ferrocene methanol: ferrocene formaldehyde (10 g, 0.047 muM) dissolved in anhydrous ethyl ether in, and transfer it to the constant pressure in the dropping funnel; in three-neck round bottom flask is added in the tetrahydro (1.8 g, 0 . 047 muM), under the protection of the helium, the ferrocene formaldehyde solution is slowly dripped into stirring in in the tetrahydro solution, then completing after 45 C reflow 2 h, for at the same time thin-layer chromatographic monitoring the reaction; after the reaction, cooling to room temperature, then adding 60 ml ethyl ether, excessive cooling of the tetrahydro adding ethyl acetate and water mixture is removed; separatory funnel for the organic layer is separated out, and washing by water three times (once for each 100 ml water); and organic water-free magnesium sulfate drying 24 h after, for after the Rotavapor distillation under reduced pressure, to obtain yellow powder 7.32 g, yield 97%, melting point 76 – 78 C.

With the complex challenges of chemical substances, we look forward to future research findings about 12093-10-6,belong iron-catalyst compound

Reference£º
Patent; Shandong Yuangen Petrochemical Co., Ltd.; Qiao Liang; Yuan Junzhou; Song Laigong; He Jingsong; Liu Shanshan; (7 pag.)CN104710482; (2018); B;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: To a magnetic stirred solution of acylferrocene (10 mmol) in methanol (30 mL) tosylhydrazine (10 mmol) was added. Then the mixture was stirred vigorously at 70 C. TLC analysis was performed until the spot of acylferrocene disappeared. Then the solution was cooled to room temperature, and N-tosylhydrazone precipitated. The precipitate was filtered and washed with petroleum ether (10 mL * 2) to get the pure product.

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Liu, Yueqiang; Ma, Xiaowei; Liu, Yan; Liu, Ping; Dai, Bin; Synthetic Communications; vol. 48; 8; (2018); p. 921 – 928;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a suspension of methyltriphenylphosphonium bromide (1equiv.) in dry THF (100 mL), under nitrogen atmosphere at room temperaturewas added potassium tert-butoxide (7.0 equiv.). The solutionwas stirred for 1 h and then a solution of the aldehyde (1 equiv.) indry THF (30 mL) was added slowly. The mixture was stirred at roomtemperature for 12 h andwas evaporated to dryness. The unreacted potassiumtert-butoxide was quenched with saturated NH4Cl solution(10 mL). The reaction mixture was then extracted with CHCl3(200 mL), washed with water (2 ¡Á 200 mL), brine (100 mL) and then dried over anhydrous Na2SO4. Evaporation of the organic layer gave aresidue, which was purified by column chromatography using hexaneas the eluting solvent to give the corresponding vinyl compounds., 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Ravivarma, Mahalingam; Kumar, Kaliamurthy Ashok; Rajakumar, Perumal; Pandurangan, Arumugam; Journal of Molecular Liquids; vol. 265; (2018); p. 717 – 726;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: To a clean and dry round bottom flask with a septum, 3-5mmol of the ferrocenylketone were added and approximately 20mL of dimethoxyethane (DME) were transferred with a positive nitrogen pressure; the mixture was stirred to obtain a reddish solution. 0.75equivalents of lithium aluminum hydride (1M in tetrahydrofuran) were added, and a change of color from red to yellow in the solution was observed. The reaction was stopped after 30min at room temperature; complete transformation was confirmed with TLC. After this time, Glauber’s salt was added and the mixture was stirred until a formation of a granular precipitate was observed. The mixture was filtered, and the solvent was eliminated to obtain yellow to orange oils or solids. The compounds were employed directly for following reactions without further purification.

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Garcia-Barrantes, Pedro M.; Lamoureux, Guy V.; Perez, Alice L.; Garcia-Sanchez, Rory N.; Martinez, Antonio R.; San Feliciano, Arturo; European Journal of Medicinal Chemistry; vol. 70; (2013); p. 548 – 557;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 12093-10-6

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: O-amino amides 1a-e (1 equiv.) and carbonyl compounds 2a-o (1.2 equiv.) were microwave irradiated (standard mode) in the presence of Phosphotungstic acid/HPW (50 % w/w) at 200 W for 3 min. After the completion of the reaction (Monitored by TLC), HPW was filtered off using celite bed/Silica bed. The crude product was purified on silica gel a column chromatography to afford the corresponding spiro and cyclic quinazolinones 3a-3n, 4a-4h, and 5a, 5b in very good yields except compounds 6a and 7a were obtained in poor yields (Eluent: n-Hexane /EtOAc). All the compounds 3a-3n, 4a-4h, 5a-b, 6a and 7a were thoroughly characterized by 1H NMR, 13CNMR, FTIR and HRMS.

The synthetic route of 12093-10-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Novanna, Motakatla; Kannadasan, Sathananthan; Shanmugam, Ponnusamy; Tetrahedron Letters; vol. 60; 2; (2019); p. 201 – 206;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Simple exploration of 12093-10-6

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

12093-10-6, Ferrocenecarboxaldehyde is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,12093-10-6

General procedure: To a stirred suspension of p-toluenesulfonyl hydrazide (1eq.) in water (12mL) and three drops of HCl 32%, the formyl or acetyl organometallic precursor (1eq.) was added. The resulting mixture was stirred for 18h at room temperature. The precipitate obtained was washed with water (2¡Á10mL) and dried under vacuum. The hydrazone derivatives were recrystallized from acetone/hexane (1:5) at -18C

12093-10-6 Ferrocenecarboxaldehyde 11138449, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Concha, Camila; Quintana, Cristobal; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Lopez, Rodrigo; Romanos, Javier; Huentupil, Yosselin; Arancibia, Rodrigo; Polyhedron; vol. 131; (2017); p. 40 – 45;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion