Introduction of a new synthetic route about 1271-51-8

With the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Vinylferrocene, cas is 1271-51-8, it is a common heterocyclic compound, the iron-catalyst compound, its synthesis route is as follows.,1271-51-8

General procedure: A deoxygenated mixture of vinylferrocene (170mg, 0.80mmol), K2CO3 (1.50g, 11mmol), tetrabutylammonium bromide (1.19g, 3.70mmol), bromochromone (0.66mmol) and Pd(OAc)2 (20mg, 0.09mmol) in DMF (23ml) was heated at 95¡ãC for 19h. After cooling to r. t. the reaction mixture was evaporated to dryness. Solid residue was dissolved in chloroform and extracted several times with water. The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residue was subjected to chromatography on SiO2 (eluent: CHCl3/methanol, 50:2). Finally the analytically pure products were obtained after recrystallization from chloroform/n-hexane mixture.

With the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Reference£º
Article; Kowalski, Konrad; Koceva-Chy, Aneta; Szczupak, Lukasz; Hikisz, Pawel; Bernasin?ska, Joanna; Rajnisz, Aleksandra; Solecka, Jolanta; Therrien, Bruno; Journal of Organometallic Chemistry; vol. 741-742; 1; (2013); p. 153 – 161;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-51-8

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

General procedure: As shown as the synthetic protocol A in Scheme 2, compounds 1-11 were synthesized following literature description [16] with m-methoxyphenol, p-methoxyphenol, resorcinol, and hydroquinone as reagents. One hydroxyl group in resorcinol and hydroquinone was protected by tert-butyldimethylsilyl chloride. Then, 17 mL of dry CHCl3 solution containing excess PhtNSCl was added dropwisely to 8 mL of dry CHCl3 solution containing monoprotected hydroquinone or resorcinol and stirred for 16 h at 0 ¡ãC until phenols cannot be detected by thin layer chromatography (TLC). The mixture was diluted with CH2Cl2 and washed by saturated NaHCO3 and water. The organic phase was dried over anhydrous Na2SO4, and the solvent was removed under vacuum. The residue was purified by column chromatography with CH2Cl2 as the eluent to afford thiophthalimides as colorless solid. The following cycloaddition reactions were carried out in dry CHCl3 solution of thiophthalimides (~ 0.1 M) and styrenes (2 equiv.) or vinyl ferrocene (2 equiv.) and freshly distilled (C2H5)3N (2 equiv.) at 60 ¡ãC. The reaction was finished with thiophthalimides not detected by TLC. Then, the solvent was evaporated under vacuum pressure, and the residual solid was purified with column chromatography to afford silylated adducts. The desilylation operation was performed in dry tetrahydrofuran (THF) solution containing 0.04 M aforementioned adducts at 0 ¡ãC, to which a solution of (n-C4H9)4NF*3H2O in THF (1 equiv. for each protective group) was added. The reaction was finished with the reagent not detected by TLC, and then the mixture was diluted with ethyl acetate and washed with saturated NH4Cl and water. The organic layer was dried over anhydrous Na2SO4, and the solvent was evaporated under vacuum pressure. The residue was purified with column chromatography to afford thiaflavans.

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Lai, Hai-Wang; Liu, Zai-Qun; European Journal of Medicinal Chemistry; vol. 81; (2014); p. 227 – 236;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1271-51-8

1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

General procedure: A deoxygenated mixture of vinylferrocene (170mg, 0.80mmol), K2CO3 (1.50g, 11mmol), tetrabutylammonium bromide (1.19g, 3.70mmol), bromochromone (0.66mmol) and Pd(OAc)2 (20mg, 0.09mmol) in DMF (23ml) was heated at 95¡ãC for 19h. After cooling to r. t. the reaction mixture was evaporated to dryness. Solid residue was dissolved in chloroform and extracted several times with water. The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residue was subjected to chromatography on SiO2 (eluent: CHCl3/methanol, 50:2). Finally the analytically pure products were obtained after recrystallization from chloroform/n-hexane mixture.

1271-51-8 Vinylferrocene 16211828, airon-catalyst compound, is more and more widely used in various.

Reference£º
Article; Kowalski, Konrad; Koceva-Chy, Aneta; Szczupak, Lukasz; Hikisz, Pawel; Bernasin?ska, Joanna; Rajnisz, Aleksandra; Solecka, Jolanta; Therrien, Bruno; Journal of Organometallic Chemistry; vol. 741-742; 1; (2013); p. 153 – 161;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-51-8

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

5-Iodo-2′-deoxyuridine was allowed to react at 60 ¡ãC for 48 h under basic conditions in CH3CN with vinylferrocene (1.2 equiv.) in the presence of palladium acetate (0.01 equiv.) and triphenylphosphine (0.02 equiv.), which afforded the coupling product 1 in 43percent yield.

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Hasegawa, Yusuke; Takada, Tadao; Nakamura, Mitsunobu; Yamana, Kazushige; Bioorganic and Medicinal Chemistry Letters; vol. 27; 15; (2017); p. 3555 – 3557;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Analyzing the synthesis route of 1271-51-8

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

In anhydrous THF (1 mL) was dissolved 6 molpercent Cu(OAc) 2 (10.9 mg,0.066 mmol) and 6.6 molpercent of ligand (R)-DTBM-SEGPHOS (78 mg,0.060 mmol). The mixture was stirred for 15 min at r.t., then DMMS(0.5 mL, 4 equiv, 4 mmol) was added dropwise and stirring was con-tinued for 10 min at the same temperature. The solution of amine 7(381 mg, 1.2 mmol) and vinylferrocene 4 (212 mg, 1 mmol) was thenadded by using Schlenk techniques to the tube containing the solu-tion of [L*CuH] complex. The reaction mixture was stirred at 40 ¡ãCovernight, then the mixture was diluted with EtOAc (5 mL) and 5percentsolution of Na 2 CO 3 (5 mL) was added dropwise. The solution was ex-tracted with EtOAc (3 ¡Á 25 mL), the collected organic layers werewashed with brine (25 mL), dried over Na 2 SO 4 , filtrated, and the sol-vent was removed under reduced pressure to afford the crude prod-uct. The crude product was purified by chromatography on SiO 2 (hex-anes/EtOAc, 30:1 + 1percent Et 3 N; R f = 0.4) to afford target product 8.Yield: 68 mg (18percent); orange solid; mp 62?65 ¡ãC; [alpha] D20 ?14.5 (c 1.00,CHCl 3 ); HPLC analysis (Chiralcel OD-H; hexane/ i PrOH, 99:1; 0.8mL/min; 254 nm) indicated 20percent ee: t R = 5.9 (major), 6.5 (minor) min.IR (ATR): 1234, 1103, 1068, 1022, 998, 822, 749, 728, 697, 514, 487cm ?1 .1 H NMR (600 MHz, CDCl 3 ): delta = 7.39 (d, J = 7.4 Hz, 4 H, -Ph), 7.31 (t, J =7.6 Hz, 4 H, -Ph), 7.23 (t, J = 7.3 Hz, 2 H, -Ph), 4.27?4.27 (m, 1 H, Fc),4.18?4.14 (m, 3 H, Fc), 4.02 (s, 5 H, Cp Fc ), 3.81 (q, J = 6.9 Hz, 1 H, H alpha ),3.53 (d, J = 14.1 Hz, 2 H, CH 2 -Ph), 3.36 (d, J = 14.1 Hz, 2 H, -CH 2 -Ph),1.47 (d, J = 6.9 Hz, 3 H, -CH 3 ).13 C NMR (151 MHz, CDCl 3 ): delta = 140.9 (2¡ÁC, Cq Ph ), 128.6 (4¡ÁC, -Ph),128.2 (4¡ÁC, -Ph), 126.7 (2¡ÁC, -Ph), 88.9 (Cq Fc ), 69.1 (-CH Fc ), 68.7 (5¡ÁC,Cp Fc ), 67.6 (-CH Fc ), 67.1 (-CH Fc ), 66.9 (-CH Fc ), 52.3 (2¡ÁC, -CH 2 -Ph), 52.2(-CH alpha ), 15.4 (-CH 3 ).HRMS (ESI): m/z calcd for [M + H + ] C 26 H 28 FeN + : 410.1571; found:410.1565.

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Plevova, Kristina; Mudrakova, Brigita; ?ebesta, Radovan; Synthesis; vol. 50; 4; (2018); p. 760 – 763;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1271-51-8

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

1271-51-8, Vinylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A deoxygenated mixture of vinylferrocene (636 mg, 3.0 mmol), K2CO3 (5.52 g, 40 mmol), tetrabutylammonium bromide (4.51 g, 14 mmol), pseudo-para dibromo-[2.2]-paracyclophane [61] (366.1 mg, 1.0 mmol) and Pd(OAc)2 (67 mg, 0.3 mmol) in DMF (43 mL) was heated at 95 ¡ãC for 20 h. After cooling to r.t. the dark reaction mixture was filtered, diluted with CH2Cl2 (~40 mL) and washed with brine (4 x 30 mL). The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residuewas subjected to chromatography on deactivated Al2O3 (n-hexane). Two fractions containing productswere collected: a first one containing 3 (270 mg, 31percent) and a second one containing 2. Slightly impure 2was again subjected to columnchromatography on silica gel with CHCl3 followed by crystallization from a CHCl3/MeOH mixture. 2 was obtained as an orange solid in a yield of 245 mg, 39percent.

The synthetic route of 1271-51-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Short Survey; Mu?cke, Philipp; Winter, Rainer F.; Kowalski, Konrad; Journal of Organometallic Chemistry; vol. 735; (2013); p. 10 – 14;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion