New learning discoveries about 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

Ferrocene methanol (ferrocenyl methanol, 3mmol), triphenylphosphine (PPh3,1.18g, 4.5mmol), all-trans retinoic acid (ATRA, 3mmol), was dissolved in 20mL of tetrahydrofuran (THF), stir to dissolve, then under nitrogen, was added diisopropyl azodicarboxylate (DIAD, 0.8g, 4.5mmol) under conditions of 0 C . The reaction Thin chromatography (TLC) monitoring process, after the completion of the reaction continued at room temperature for 2 hours. 30 deg C and concentrated in vacuo by rotary evaporation to a thick oil, the product was extracted using silica gel column chromatography (ethyl acetate / petroleum ether = 2: 8 volume ratio) to give the product as the first ferrocene carboxylic acid (FCRA ), 83% yield

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Patent; Jilin University; SUN, HONGCHEN; SUN, BIN; ZHU, SHOUJUN; WANG, DANDAN; ZHANG, KAI; LI, XING; WANG, LU; WANG, YIBO; TANG, QI; XIN, YING; YANG, BAI; (13 pag.)CN106265600; (2017); A;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 2-Imidazolidone

With the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

The iron-catalyst compound, cas is 1271-42-7 name is Ferrocenecarboxylic acid, mainly used in chemical industry, its synthesis route is as follows.,1271-42-7

Chlorocarbonyl ferrocene 2b: The synthesis of chlorocarbonyl ferrocene 2b was adapted from a procedure of Cormode et al. {Dalton Trans. 2010, 39, 6532). After suspending ferrocenecarboxylic acid 2a (462 mg, 2.01 mmol) in dry CH2CI2 (23 mL), oxalyl chloride (1 100 mu, 13.64 mmol) in dry CH2CI2 (10 mL) was added dropwise to the reaction mixture whereby the orange suspension turned dark red. The reaction mixture was refluxed for 2 h and then stirred overnight at room temperature. The solvent was then removed under vacuum. The product 2 was not purified and used immediately for the next synthetic step.

With the rapid development of chemical substances, we look forward to future research findings about 1271-42-7

Reference£º
Patent; UNIVERSITAeT ZUeRICH; THE UNIVERSITY OF MELBOURNE; GASSER, Gilles; GASSER, Robin B.; HESS, Jeannine; JABBAR, Abdul; PATRA, Malay; WO2015/44395; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 7-Bromo-2-chloro-1,5-naphthyridine

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

The iron-catalyst compound, cas is 1271-51-8 name is Vinylferrocene, mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

General procedure: A deoxygenated mixture of vinylferrocene (170mg, 0.80mmol), K2CO3 (1.50g, 11mmol), tetrabutylammonium bromide (1.19g, 3.70mmol), bromochromone (0.66mmol) and Pd(OAc)2 (20mg, 0.09mmol) in DMF (23ml) was heated at 95¡ãC for 19h. After cooling to r. t. the reaction mixture was evaporated to dryness. Solid residue was dissolved in chloroform and extracted several times with water. The organic phase was dried with MgSO4, filtered and the solvent was removed from the filtrate in vacuo. The residue was subjected to chromatography on SiO2 (eluent: CHCl3/methanol, 50:2). Finally the analytically pure products were obtained after recrystallization from chloroform/n-hexane mixture.

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Reference£º
Article; Kowalski, Konrad; Koceva-Chy, Aneta; Szczupak, Lukasz; Hikisz, Pawel; Bernasin?ska, Joanna; Rajnisz, Aleksandra; Solecka, Jolanta; Therrien, Bruno; Journal of Organometallic Chemistry; vol. 741-742; 1; (2013); p. 153 – 161;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Some tips on 1273-86-5

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1273-86-5,Ferrocenemethanol,as a common compound, the synthetic route is as follows.

General procedure: To a mixture of 1.0mmol of ferrocene alcohol and 1.0mmol of the corresponding nitroimidazole in 1.0ml of methylene dichloride, 0.18ml of 45% aqueous solution of fluoroboric acid was added under vigorous stirring. The agitation was continued for 5min then diethyl ether (15ml), the same amount of cold water, and 5-10mg of ascorbic acid were added to the reaction flask. After vigorous shaking of the mixture, the organic solution was separated, washed with cold water (3¡Á15ml), the solvents were removed in vacuo, and the residue was dried over CaCl2 in a desiccator.

1273-86-5, 1273-86-5 Ferrocenemethanol 10856885, airon-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Snegur, Lubov V.; Lyapunova, Maria V.; Verina, Daria D.; Kachala, Vadim V.; Korlyukov, Alexander A.; Ilyin, Mikhail M.; Davankov, Vadim A.; Ostrovskaya, Larissa A.; Bluchterova, Natalia V.; Fomina, Margarita M.; Malkov, Victor S.; Nevskaya, Kseniya V.; Pershina, Alexandra G.; Simenel, Alexander A.; Journal of Organometallic Chemistry; vol. 871; (2018); p. 10 – 20;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

New learning discoveries about 1271-51-8

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1271-51-8,Vinylferrocene,as a common compound, the synthetic route is as follows.

General procedure: General procedure: In a J-Young NMR tube substrate(0.10 mmol), catalyst precursor 15 (23.5 mg, 0.02 mmol) andB(C6F5)3 (2.6 mg, 0.005 mmol) were dissolved in C6D6 (0.7 mL).After 30 min the atmosphere was removed, dihydrogen (2 bar)applied and the reaction monitored by 1H NMR spectroscopy.Conversion was determined from the 1H NMR spectra. (see theSupporting Information for control experiments and spectroscopicdata of hydrogenation products 17a-l).

1271-51-8, As the paragraph descriping shows that 1271-51-8 is playing an increasingly important role.

Reference£º
Article; Woelke, Christian; Daniliuc, Constantin G.; Kehr, Gerald; Erker, Gerhard; Journal of Organometallic Chemistry; vol. 899; (2019);,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Brief introduction of 1271-55-2

1271-55-2, The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

1271-55-2, Acetylferrocene is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a stirred suspension of p-toluenesulfonyl hydrazide (1eq.) in water (12mL) and three drops of HCl 32%, the formyl or acetyl organometallic precursor (1eq.) was added. The resulting mixture was stirred for 18h at room temperature. The precipitate obtained was washed with water (2¡Á10mL) and dried under vacuum. The hydrazone derivatives were recrystallized from acetone/hexane (1:5) at -18C

1271-55-2, The synthetic route of 1271-55-2 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Concha, Camila; Quintana, Cristobal; Klahn, A. Hugo; Artigas, Vania; Fuentealba, Mauricio; Biot, Christophe; Halloum, Iman; Kremer, Laurent; Lopez, Rodrigo; Romanos, Javier; Huentupil, Yosselin; Arancibia, Rodrigo; Polyhedron; vol. 131; (2017); p. 40 – 45;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1271-42-7

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

1271-42-7, Ferrocenecarboxylic acid is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Chlorocarbonyl ferrocene 2b: The synthesis of chlorocarbonyl ferrocene 2b was adapted from a procedure of Cormode et al. {Dalton Trans. 2010, 39, 6532). After suspending ferrocenecarboxylic acid 2a (462 mg, 2.01 mmol) in dry CH2CI2 (23 mL), oxalyl chloride (1 100 mu, 13.64 mmol) in dry CH2CI2 (10 mL) was added dropwise to the reaction mixture whereby the orange suspension turned dark red. The reaction mixture was refluxed for 2 h and then stirred overnight at room temperature. The solvent was then removed under vacuum. The product 2 was not purified and used immediately for the next synthetic step.

1271-42-7, As the paragraph descriping shows that 1271-42-7 is playing an increasingly important role.

Reference£º
Patent; UNIVERSITAeT ZUeRICH; THE UNIVERSITY OF MELBOURNE; GASSER, Gilles; GASSER, Robin B.; HESS, Jeannine; JABBAR, Abdul; PATRA, Malay; WO2015/44395; (2015); A1;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1,2,3,4-Tetrahydroquinoline-6-carboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

A common heterocyclic compound, the iron-catalyst compound, name is Vinylferrocene,cas is 1271-51-8, mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

Vinylferrocene (1.50 g, 7.07 mmol), 4-iodobenzaldehyde(0.684 g, 2.95 mmol), palladium(II) acetate (0.0331 g,0.147 mmol) and tri-o-tolyl-phosphine (0.224 g, 0.767 mmol) weredissolved in a 1:10 solution (v/v) of triethylamine and acetonitrile (30 ml). The dark red reaction mixturewas stirred under N2 at 82 Cfor 24 h. After cooling, the solvent was removed and resulting redresidue was dissolved in 25 ml DCM and 25 ml water added. Theorganic layer was separated and the aqueous layer washed withDCM (3 25 ml). The organic fractions were combined, stirred overanhydrous MgSO4 and removed by gravity filtration. The filtratewas collected and the solvent removed to give a dark red residue.The product was purified by column chromatography, initially usinga solvent system of 100percent petroleum ether, followed by 50:50mixture of petroleum ether (40-60 C) and DCM. The desiredproduct (1) was isolated as a dark red powder (0.680 g, 73percent). Mp:decomposition without melting, onset at 110 C. 1H NMR(399.951 MHz, CDCl3): d (ppm) 9.97 (s, 1H, CHO), 7.83 (d, 2H,J 8.3 Hz, ArH), 7.56 (d, 2H, J 8.4 Hz, ArH), 7.07 (d, 1H, J 16.1 Hz,HC]CH), 6.73 (d, 1H, J 16.1 Hz, HC]CH), 4.51 (t, 2H, Cp), 4.35 (t,2H, Cp), 4.16 (s, 5H, Cp). 13C{1H} NMR (100.635 MHz, CDCl3):d (ppm) 191.55, 144.07, 134.67, 131.52, 130.32, 126.07, 124.60,82.25, 69.76, 69.38, 67.37. IR (KBr, cm1) n 1693 (C]O), 1630 (C]C). EI-MS: m/z 316 ([M], 100percent). Elemental Analysis forC19H16FeO0.5H2O calculated C, 70.18; H, 5.27, found C, 70.39; H,5.07percent.

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Reference£º
Article; Baartzes, Nadia; Stringer, Tameryn; Seldon, Ronnett; Warner, Digby F.; De Kock, Carmen; Smith, Peter J.; Smith, Gregory S.; Journal of Organometallic Chemistry; vol. 809; (2016); p. 79 – 85;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Downstream synthetic route of 1273-86-5

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

1273-86-5, Ferrocenemethanol is a iron-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

A mixture of K2CO3 (1 mmol) and the catalyst (52 mg, ?3 mol% of Pd2+) in toluene (5 ml) was prepared in a two necked flask. The flask was evacuated and refilled with pure oxygen. To this solution, the alcohol (1 mmol, in 1 ml toluene) was injected and the resulting mixture was stirred at 80 C under an oxygen atmosphere. After completion of reaction, the reaction mixture was filtered off and the catalyst rinsed twice with CH2Cl2 (5 ml). The excess of solvent was removed under reduced pressure to give the corresponding carbonyl compounds.

1273-86-5, As the paragraph descriping shows that 1273-86-5 is playing an increasingly important role.

Reference£º
Article; Alizadeh; Khodaei; Kordestania; Beygzadeh; Journal of Molecular Catalysis A: Chemical; vol. 372; (2013); p. 167 – 174;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

 

Application of 1,1-Dioxo-isothiazolidine

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

A common heterocyclic compound, the iron-catalyst compound, name is Vinylferrocene,cas is 1271-51-8, mainly used in chemical industry, its synthesis route is as follows.,1271-51-8

General procedure: As shown as the synthetic protocol A in Scheme 2, compounds 1-11 were synthesized following literature description [16] with m-methoxyphenol, p-methoxyphenol, resorcinol, and hydroquinone as reagents. One hydroxyl group in resorcinol and hydroquinone was protected by tert-butyldimethylsilyl chloride. Then, 17 mL of dry CHCl3 solution containing excess PhtNSCl was added dropwisely to 8 mL of dry CHCl3 solution containing monoprotected hydroquinone or resorcinol and stirred for 16 h at 0 ¡ãC until phenols cannot be detected by thin layer chromatography (TLC). The mixture was diluted with CH2Cl2 and washed by saturated NaHCO3 and water. The organic phase was dried over anhydrous Na2SO4, and the solvent was removed under vacuum. The residue was purified by column chromatography with CH2Cl2 as the eluent to afford thiophthalimides as colorless solid. The following cycloaddition reactions were carried out in dry CHCl3 solution of thiophthalimides (~ 0.1 M) and styrenes (2 equiv.) or vinyl ferrocene (2 equiv.) and freshly distilled (C2H5)3N (2 equiv.) at 60 ¡ãC. The reaction was finished with thiophthalimides not detected by TLC. Then, the solvent was evaporated under vacuum pressure, and the residual solid was purified with column chromatography to afford silylated adducts. The desilylation operation was performed in dry tetrahydrofuran (THF) solution containing 0.04 M aforementioned adducts at 0 ¡ãC, to which a solution of (n-C4H9)4NF*3H2O in THF (1 equiv. for each protective group) was added. The reaction was finished with the reagent not detected by TLC, and then the mixture was diluted with ethyl acetate and washed with saturated NH4Cl and water. The organic layer was dried over anhydrous Na2SO4, and the solvent was evaporated under vacuum pressure. The residue was purified with column chromatography to afford thiaflavans.

As the rapid development of chemical substances, we look forward to future research findings about 1271-51-8

Reference£º
Article; Lai, Hai-Wang; Liu, Zai-Qun; European Journal of Medicinal Chemistry; vol. 81; (2014); p. 227 – 236;,
Iron Catalysis in Organic Synthesis | Chemical Reviews
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion