Synthetic Route of 1293-65-8, Chemistry graduates have much scope to use their knowledge in a range of research sectors, including roles within chemical engineering, chemical and related industries, healthcare and more. 1293-65-8, Name is 1,1′-Dibromoferrocene, molecular weight is 335.76. In an Article,once mentioned of 1293-65-8
The phosphorus-chiral diphosphine 1,1?-bis(1-naphthylphenylphosphino)ferrocene (1a) and its new electronically modified derivatives 1b-d bearing methoxy and/or trifluoromethyl groups in para positions of the phenyl rings were investigated as ligands in rhodium-catalyzed (asymmetric) hydroformylation. Depending on ligand basicity, high-pressure NMR and IR characterization of the respective (diphosphine) rhodium dicarbonyl hydride precursor complexes revealed subtle differences in the occupation of bis-equatorial (ee) and equatorialapical (ea) coordination geometries. The high ee:ea ratio of the four complexes contrasted with the clear ea preference observed for the related achiral compound dppf (1,1?-bis-(diphenylphosphino)ferrocene). In the hydroformylation of styrene the best result (50% ee) was obtained by employing the best pi-acceptor ligand 1c, incorporating two p-trifluoromethyl substituents. Substrate electronic variations using 4-methoxystyrene and 4-chlorostyrene showed a pronounced influence on turnover frequencies, branched/linear aldehyde product ratios, and enantiodiscrimation, whereas in the hydroformylation of 1-octene ligand electronic perturbations did affect only the rate, but not the selectivity of the reaction.
This is the end of this tutorial post, and I hope it has helped your research about 1293-65-8, you can contact me at any time and look forward to more communication. Synthetic Route of 1293-65-8
Reference:
Iron Catalysis in Organic Synthesis | Chemical Reviews,
Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion